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INTRODUCTION 

Computer simulation has been used for some time 
in the analysis and design of dynamic systems. With 
recent advancements in computer performance, the 
field of dynamic simulation-long the exclusive 
domain of the analog computer-has begun to 
utilize digital methods. No less than a score of 
digital simulation programs have appeared since 
R. G. Selfridge's pioneering effort in 1955; and the 
number is ever-increasing. These programs offer a 
convenient method of simulating continuous sys­
tem dynamics employing well-known and easy-to­
use analog computer programming techniques. 
The common starting point for such simulation is 
the conventional analog block diagram, and the 
common approach is the breakdown of the mathe­
matical system model into its component parts or 
functional blocks. These blocks, having a near one­
to-one correspondence with analog computing ele­
ments such as integrators, summers, limiters, etc., 
usually appear as subroutines within the simulator 
program. Using one of the sim ulation packages, 
"programming" involves no more than merely in­
terconnecting the functional blocks by a sequence of 
connection statements according to the rules laid 
down by the input language. This interconnecting 
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of blocks is analogous to the wiring of the patch­
board on an analog computer. Therefore, these 
digital-analog simulation programs combine the 
best features of the analog and digital computers: 
the flexibility of block connection structure of the 
former and the accuracy and reliability of the latter. 

DSL/90 is a new digital simulation package for 
the 7090 family of computers. The program is avail­
able from the SHARE library (lWDSL No. 3358). 
Its development, from drawing board to production 
code, was guided by the following broad objectives: 

• To incorporate within it all the desirable 
and proven features of its predecessors; 

• To make this useful technique of digital 
simulation attractive to a group of users 
who are not analog-computer-oriented, 
yet retain the large following of analog 
programmers who are devoted to the 
building-block approach to system anal­
ysis; 

• Toprovide a "continuous system simu­
lator" program that is applicable to a 
broad range of continuous system anal­
ysisand not restrained by conventional 
digital-analog simulator techniques. 
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Some of the DSL/90 features are: 

• A library of DSL system blocks such as 
integrator, limiter, summer, etc.; 

• A simple nonprocedural applications­
oriented input language specifying the 
rules for connecting the library blocks 
together; 

• An input routine which permits quick 
and easy parameter entry and data 
changes; 

• Complete print output routines includ­
ing a graphical output facility; 

• Choice of numerical integration routines 
with or without error bounds using cen­
tralized or noncentralized integration 
schemes; 

• Automatic sequencing of input language 
statements (this is called "sorting" in 
programs such as ASTRAL and 
MIDAS); 

• Facility to add to the DSL/90 library 
any user-defined blocks in the form of 
subroutines (FORTRAN, MAP or 
binary decks); 

• Intermixing of DSL and FORTRAN 
language statements; 

• Repeatability of language statements 
(macro-generation); 

• Dynamic storage of data. 

Although DSL/90's input .language statements 
are block-oriented, they are not restricted solely to 
block notation. DSL/90 permits an intermixing of 
its input language statements (henceforth called 
DSL statements) and FORTRAN IV statements. 
Thus, the power of FORTRAN is made available 
to the problem solver. One far-reaching implica­
tion of this language feature is that simulation 
"programming" may begin anywhere from the 
analog block diagram formulation of the problem 
to the higher-level mathematical model in the form 
of ordinary differential equations. 

OPERATIONAL FEATURES 

Basic Language Features 

The DSL/90 language statements may be classi­
fied into three general categories: I) structure or 
connection statements which define the intercon­
nection of the functional blocks, 2) data statements 
which permit the entry of alphanumeric informa­
tion, and 3) simulation control statements. 

The Connection Statements. In the DSL/90 input 
language, the basic functional block is characterized 
by an output (outputs) that is functionally related 
to one or more inputs. Parameter names and initial 
conditions, if any, are also included in the statement 
which has the following general form: 

Outputs = Block name (Initial conditions, 
Parameters, Inputs) 

Below are examples of basic DSL connection or 
structure statements: 

1. OUTNAM = SQRT (TEMP) 

In the block diagram representation (Fig. 1), 
SQ R T is the name of the functional block. It has a 
single input called TEMP and the output is given 
the name OUTNAM. 

TEMP-~·I " ~-"""·~OUTNAM 

SQRT 

Figure 1. 

2. Y = INTG RL (lC2, YDOT) 

Figure 2 represents the block INTG RL which is 
the basic DSL/90 integrator block. IC2 and YDOT 
are its initial condition and input name respectively. 

IC2 

~ 

1 
YDOT ·1; ..... y 

INTGRL 
Figure 2. 

3. OUT1,OUT2 = VALVE (LEVEL, INHI, 
INMED, INLO) 

Figure 3 illustrates a user-supplied functional 
block named VALVE with two outputs OUT1 and 
OUT2. LEVEL is a unique parameter name se-

LEVEL 

:1 
l 

IN HI 
: OUT 1 INMED 

INLO 
OUT 2 

VALVE 

Figure 3. 
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lected by the user, and INHI, INMED and INLO 
are the names of the three input variables to the 
block. 

From the above illustrations, it should be evident 
that a functional block in the DSL/90 language is 
completely specified by the unique names assigned 
to the inputs and outputs of each block. The user 
is free to select names meaningful to his process 
simulation, the only restriction being that a name 
consists of no more than 6 alphanumeric characters, 
the first of which is alphabetic. User-supplied 
blocks may have any name following the same re­
striction above. However, the names of standard 

blocks supplied as part of the DSL/90 simulation 
package are preassigned. DSL/90 provides an ex­
tensive library of functional blocks which are listed 
in Table 1. 

The above format for characterizing functional 
blocks in DSL/90 is consistently adhered to. How­
ever, there are these exceptions: the basic operations 
of multiplying, dividing, summing and subtracting 
are replaced by the operators *, /' + and -, re­
spectively. To this list of operators we add ** for 
exponentiation. Let us illustrate one of these opera­
tions by simulating a multiplier output (Fig. 4), 

OUT = A·B. 

Table 1. Functional Description of Standard DSL/90 Blocks 

GENERAL FORM FUNCTION 

** Y = INTGRL (IC, X) Y=f~ X dt + IC 

Y(O) "' IC 

INTEGRATOR EQUIVALENT L.APLACE TRANSFORM • t 
* Y=MODINT (IC, PI' P2 , X) Y=Jot X dt + IC PI· I, P2 • 0 

Y·IC PI =0, P2 • I 
MODE-CONTROLLED INTEGRATOR y. LAST OUTPUT PI =0, P2· 0 

* Y = REALPL (lC, P, X) py + Y • X 
Y (0) • IC 

1ST ORDER SYSTEM (REAL POLE) EQUIVALENT LAPLACE 
I 

TRANSFORM I PS + I 

* Y = LEDLAG (lC, PI ' P2 ' X) P2 y + Y .. PI X + x 
Y(O)" IC 

PS+I 
LEAD- LAG EQUIVALENT L APL ACE TRANSFORM 1_1 __ 

P2S + I 

* Y = CMPXPL (IC I , IC2 , PI , P2, X) 
•• • 2 
Y + 2 PI P2 Y + P2 Y • X 

Y(O) ,. IC I 
y(O) ,. IC2 I 

2 ND ORDER SYSTEM (COMPLEX POLE) EQUIVALENT l.APLACE TRANSFORM I 

S2+2PI P2 S + P~ 

Y ,. DERIV (lC, X) Y = ~~ QUADRATIC INTERPOLATION 

Y(O) • IC 

DERIVATIVE EQUIVALENT L.APLACE TRANSFORM' S 

Y=DELAY (N,P,X) Y(t) = X(t-P) t = P 
P =TOTAL DELAY IN TERMS OF INDEPENDENT VAR. 

Y=O t < P 
N = MAX NO. OF POINTS DELAY 

DEAD TIME (DELAY) EQUIVALENT ·LAPLACE TRANSFORM' e -PS 

Y ,. ZHOLD (P, X) Y·X P·I 

Y (0) = 0 Y • LAST OUTPUT P·O 

ZERO-ORDER HOLD EQUIVALENT l.APLACE TRANSFORM I 1. ( 1- e-St ) 
S 

Y .. IMPL (lC, ERROR, FUNCT) Y"IC t • 0 FIRST ENTRY 

IMPLICIT FUNCTION y .. FUNCT (Y) t ~ 0 

IY- FUNCT(Y) ''-ERROR' lyl 
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SWITCHING FUNCTIONS 

Y II FCNSW (P, XI , X2 , X3) y. XI P< 0 

y. X2 P-O 

FUNCTION SWITCH y. X3 P>O 

Y = INSW (P, XI' X2 ) Y - XI P<O 

INPUT SWITCH (RELAY) y. X2 P~O 

YI ' Y2 • OUTSW (P, X) YI • X, Y2 • 0 P<O 

OUTPUT SWITCH YI • 0, Y2 • X P~O 

Y = COMPAR (XI' X2) Y • 0 XI < X2 

COMPARATOR Y • I XI ~ X2 

Y :: RST (PI' P2 ' P3) y·O PI > 0 
Y • I P2 > 0, (PI " 0) 
y·O P3 > 0, Yn-I • I , (P2 ~ 0, PI ~ 0) 

RST FLIP- FLOP Y • , P3 > 0, Yn-I =0, 
II " 

* THESE FOUR BLOCKS EXIST AS BUILT-IN MACROS WITHIN DSL. IN-LINE CODE REPRESENTING 

AN EQUIVALENT INTE~RATOR CIRCUIT IS GENERATED FOR EACH USE TO PERMIT THE USE OF 

CENTRALIZED INTEGRATION SCHEMES WITHIN THE BLOCKS. 

* * INTGRL MUST BE THE RIGHTMOST TERM FOR EACH LEVEL OF USAGE. IF X IS A SINGLE VARIIABLE 

NAME THEN IT MUST BE UNIQUE WITHIN THE PROBLEM. IC MUST ALSO BE UNIQUE. (-IC IS 
NOT VALID). A LITERAL MAY BE USED FOR IC. ALSO SE E SECT. 5-1. 

We have decided not to use OUT = MULT (A, 
B), but simply OUT = A ~B. Let us summarize 
these ideas by considering a solution to Mathieu's 
equation: 

y + (1 + A cos t) y = 0 y (0) = 0, y(O) = YO 

As the DSL connection st41tements for this circuit 
follow a near one-to-one cqrrespondence with the 
functional blocks in Fig. 5, they may be written as: 

FCN A * COS (TIME) 
MULT FCN*Y 
Y2DOT - Y - MULT 
YDOT INTG RL (0., Y2DOT) 
Y INTG RL (YO, YDOT) 

(Note that TIME is a DSL system name represent­
ing the independent variable of integration. It may 
easily be renamed by the user.) , 

Observe that the DSL statements in the above 
example are also FORTRAN arithmetic statements, 

B 

A--..... x t---·OUT 

Figure 4. 

and the right-hand portions of the statements are 
merely FORTRAN expressions. Therefon;:, as such, 
their complexity is restricted only by the rules' 1that 
govern arithmetic expressions in the FORTRAN 
language. 

Furthermore, these expressions can serve as 
inputs to any functional block, regardless of 
whether it is a DSL/90 or user-supplied block. For 
example, the first three DSL structure statements in 
the problem above may be written as one statem1ent, 

Y2DOT = - Y - A * COS (TIME):+: Y; 

or perhaps as 

Y2DOT = - Y * (1. + A * COS (TU~E)). 

Y +( I + A cos t) y : O. y(O):O; yeo): Yo 

1-----1----_ Y 

MULT 

Figure 5. 
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FUNCTION GENERATORS 

GENERAL FORM FUNCTION 

Y·AFGEN (FUNCT. X) Y: FUNCT (X) Xo~X" .Xn 
LINEAR INTERPOLATION 

y. FUNCT (Xo) X< Xo 
ARBITRARY LINEAR FUNCTION GENERATOR Y=FUNCT (Xn) X> Xn 

Y·NLFGEN (FUNCT. X) y. FUNCT (X) Xo~X ~ Xn 
QUADRATIC INTERPOLATION (LA GRANGE) 

Y= FUNCT (Xo) X< Xo 
NON - LINEAR FUNCTION GENERATOR y. FUNCT (Xn) X> Xn 

Y·LIMIT (PI' P2• X) y. PI X<PI ¥ y. P2 X >P2 
LIMITER y·x PI~X~ P2 

~---.. X 

Y·QNTZR (P, X) y. kP (k-1/2)P<X~(k+ 1/2)P 

~x k=O,.:I:I. :2. :1:3 ..... 

QUANTIZER 

Y= DEADSP (PI' P2• X) Y·O PI ~X~ P2 P, Yf~/ y. X- P2 X> P2 
DEAD SPACE y. X - PI X< PI 

45 0Y· ~ X 

Y·HSTRSS (lC. PI' P2 • X) Y = X- PI (X -Xn-I) > 0 AND 

~ 
Yn-I~(X-PI) 

Y(O)·IC y. X - P2 (X-Xn_I)<O AND P2 PI 450
X Yn_I~(X - P2) 

HYSTERESIS LOOP OTHERWISE y. LAST OUTPUT / / 

Y= STEP (P) Y·O t. < P Y tl 
STEP FUNCTION y .. I t~P :P t 

~ I 

y .. RAMP (P) Y=O t<P 
Y! P 6 450 

RAMP FUNCTION Y =t-P t~ P 
t .. 

Y=IMPULSE (PI ,P2) Y=O t < PI 

Yb"'t:1 Y = I (t - PI) • k P2 I t y=o (t - PI) ~ k P2 ... 
IMPULSE GENERATOR k·O.I.2.3 ..... PI 

y. PULSE (P, X) y·o INITIAL 

~ 
Y=I Tk~t<(Tk+X) 1 X , 
Y=O OTHERWISE 

TI T2 t k=I,2,3 ..... 
PULSE GENERATOR WITH P AS TRIGGER Tk• t OF PULSE k. Pk 

Y • SIN E (PI' P2 • P3 ) v=o t<PI Y f P
'3

/P2 
P2=FREQUENCY IN RADIANS/SEC. V"SIN [P2·(t-PI )+P3] t~PI ~I~·~:--;i P3 = PHASE SHIFT IN RADIANS 
TRIGONOMETRIC SINE WAVE WITH I ""-/ 
AMPLITUDE. PHASE. AND DELAY 

V·NORMAL (PI' P2 • P3 ) Y= GAUSSIAN DISTRIBUTION lAy WITH MEAN. P2 • AND 
NOISE GENERATOR ·STANDARD DEV I ATION. P3 (NORMAL DISTRIBUTION) (PI = ANY ODD INTEGER) I ~ 
y .. UNZRPI (PI) y .. UNIFORM DISTRIBUTION 0 TO I If(Y) 

(PI= ANY ODD INTEGER) I Y 

o· flY) 1 r ~ 

V"UNMIPI (PI) V=UNIFORM DISTRIBUTION. 
-I TO +1 I I Y 

V = UNATOB (PI' P2• P3 ) Y= UNIFORM DISTRIBUTION. 
-I I ~ 

NOISE GENERATOR P2 TO P2 +P3 ·rtf)-' 
(UNIFORM DISTRIBUTION) Ip2 I'! 
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In addition, if the output, YDOT, of the first in­
tegrator is not a variable of interest, the two integra­
tors may be "nested" as follows: 

Y = INTG RL (YO, INTGRL (0., Y2DOT)). 

Finally, if the variable Y is the oRly one whose out­
put is desired, the problem may be described by a 
single DSL connection statement, namely, 

Y = INTGRL (YO, INTGRL (0., - Y * 
(1. + A*COS(TIME)))). 

The Data Statements. The subject of data entry was 
given prime consideration during the development 
of language features of DSL/90. The end result is 
free-form and symbolic specification of parameter 
values and initial conditions following a card identi­
fier label which is punched left-adjusted in the first 
six columns of a data card. For example, 

Co Is 1-6 
PARAM 

INCON 
CONST 

7-72 
A = 0.5, PARI = 62.4, 

PAR2 = 3.215 E + 4 
ICI = 0.2, XDOT = 1.3 
CIC = 7.3, C2C = 100., 

T = 46.25, 
EPSILN = 1.0 - 05 

The identifying labels begin in column one. The 
data items, separated by commas, may be placed 
anywhere in columns 7-72. Blanks are ignored. 
Three consecutive decimal points at the end of any 
statement indicate that it is to be continued on the 
next card. Continuation may begin anywhere in 
columns 1-72. Data statements may be inter­
mingled with connection statements. 

The Control Statements. The statements may be 
conveniently grouped into three types: 

1. Problem output control statements include 
print and plot requirements, title information and 
labeling of graphs, such as: 

PRINT .01, Y, Y2DOT 
PREPAR .005, Y, Y2DOT 
GRAPH 8.,6., TIME, Y, Y2DOT 
LABEL SOLUTION OF MATHIEU'S 

EQUATION 
RANGE DELT, X 

The above cards will cause the printing of TIME, 
Y, and Y2DOT at intervals of 0.01 units of time, 
and preparation of TIME, Y, and Y2DOT for 
graphing at intervals of 0.005 units of time. A 
single 8 x 6-inch graph properly labeled as directed, 
will be made with Y and Y2DOT plotted vs TIME. 
The maximum and minimum values attained by 
DELT and X will be printed at the end of the run. 

2. Problem execution control statem,ents are 
used to set error bounds and step size for integra­
tion routines, prescribe run cutoff conditions, and to 
specify other pertinent run information. Typical 
examples are 

CONTRL DELT = .05, FINTIM = 2.0 
ABSERR YDOT = 1.0 E - 5, Y = 5.0 E - 4. 

The simulation will be executed from 0 to 2.0 with 
an integration interval of 0.05. The error bounds 
on YDOT and Y will be held at 1.0 x 10-5 and 
5.0 x 10-4

, respectively. The latter bound will be 
applied to all other unspecified integrator outputs. 

3. System control statements provide the user 
with a number of options, the most important ones 
being choice of integration methods, bypassing the 
sequencing routine, and renaming of system vari­
ables. They also include an END card which sig­
nifies the end of a logical set of data ,cards, and a 
STOP card which ends the computer run. 

For example: 

CONTIN 
INTEG MILNE 
NOSORT 
RENAME TIME = X, DELT = DELX 
FINISH DIST = O. 

These cards cause continuation of the simulation 
from the last calculated point, selection of the Milne 
5th-order integration scheme, exercise of the no-sort 
option, renaming of two systems variables, and 
termination of the run when the value of DIST 
reaches zero. 

All data and control cards, with the exception 
of the END and STOP cards and certain logical 
groups of cards (such as continuation statements) 
may be intermixed with DSL structure statements 
and may appear in any order. Proper statement 
order is determined by an internal sort based on 
correct information flow. Table 2 shows a c:ompll~te 
list of DSL/90 data and control statements. Re­
turning to Mathieu's equation, a complete DSL/'90 
program for y + (1 + A cost) y = 0 may be written 
as follows: 

1-6 
TITLE 

PARAM 

INCON 
INTEG 

7-72 
SOLUTION OF MATHIEU'S 

EQUATION 
Y2DOT = - Y*(1.0 + A * COS 
(TIME)) 
A = 0.5 
Y = INTGRL (YO, INTGRL (0., 
Y2DOT)) 
YO = 20.0 
MILNE 
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TABLE 2 Summary of DSL/90 Data Statement Format, 

Label Function (By Example) 

COL. 1-6 7-72 

PROBLEM DATA I""PUT: 
PARAM 
CONST 
INCON 
AFGEN 
NLFGEN 
TABLE 

TAU ~ 25., PAR = 3.15BE3, C4 = 2.0 E-5 
CONI =45.3, PI=3.14159, K=3 
ICI = 20., A = 50.2, IC3 = 0 
FCN = 3.,25.,5.2,26.4,6.0,24., 7.5,21.3 
FY3 ~ 0.,850.,5., 1245.,8., 1.574E3, 12.4, 2.4E03 
PARI (8) = 4.5, INPUT(l-4) = 2.,2*8.6, 3.52E3 

PROBLEM OUTPUT CONTROL: 
PRINT 0.1, X, XDOT, VELOC 
TITLE MASS, SPRING, DAMPER SYSTEM IN DSL/90 
PREPAR .05, X, Y, XDOT 
GRAPH 10., 8., TIME, X, XDOT 
LABEL MASS, SPRING, DAMPER SYSTEM - 6/1/65 
RANGE X, XDOT, VELOC, DELT 

PROBLEM EXECUTION CONTROL: 
CONTRL DELT = .002, FINTIM = 8.0, DELMIN = I.OHO 
FINISH DIST=O., ALT=5000. . 
RELERR X = I .E-4, XDOT = 5.E-5 
ABSERR X = I .E-3, XDOT = I.E-4 
CONTIN 
INTEG MILNE 
RESET GRAPH, PRINT 

DSL/90 TRANSLATOR PSEUDO-OPERATION';: 
RENAME TIME = DISPL, DELT ~ DELTX 
INTGER K, GO 
MEMORY INT(4), DELAY (100) 
STORAG IC(6), PARAM (10) 
DECK 

SORT 
NOSORT 
PROCED 

ENDPRO 
MACRO 

ENDMAC 
END 
STOP 

CONTRL 
ABSERR 
PRINT 
END 
STOP 

X = FCN (A, B, PAR5, IC3) 

OUT = FCN2 (ICI, R, T, X) 

DELT = .02, FINTIM = 2.0 
Y2DOT = 1.0E-5, Y = 2.0 E-5 
0.05, Y, Y2DOT 

It should be apparent by now that the DSL input 
language is block-oriented, symbolic, and free-form. 
The use of FORTRAN is not limited to arithmetic 
statements. All FORTRAN library functions such 
as SQRT, SIN, COS, etc., are available. Under 
the rules which are clearly defined within DSL/90, 
a large subset of FORTRAN becomes available to 
the simulation user without sacrificing the ease of 
block notation programming. What this means to 
the engineer who is unskilled in FORTRAN pro­
gramming is simply this: he can still perform his 
process simulation with a simple language, follow­
ing a step-by-step building block approach. As he 
becomes more proficient, his programming becomes 
correspondingly more efficient and he may want to 
include elementary FORTRAN language features in 
his connection statements. Still later, as the com­
plexity of his problem increases, he may use to ad­
vantage the more powerful features of DSL and 
FORTRAN. 

Advanced Language Features 

There are a number of other DSL/90 language 
features which are especially useful for the simula­
tion of large or complex problems. We shall ex­
amine several of these. 

Procedural Statements. Recall that the order in 
which DSL statements are entered is unimportant 
because connection statements are separated from 
the rest and sequenced (or "sorted") by the DSL 
processor (unless a "no-sort" option is exercised). 
In other words, the DSL/90 language may be con­
sidered as nonprocedural. In contrast, FORTRAN 
is a procedural language since FORTRAN state­
ments are executed in the order in which they are 
written. Frequently, in a complex process simula­
tion, it is desirable to introduce procedural state­
ments within the simulation program. The purpose 
may be to control signal flow in certain portions of 
the program, or perhaps to compute a large number 
of parameter values once and only once. DSL/90 
uses a pair of pseudo:-operations, PROCED and 
ENDPRO, punched in columns 1-6, to designate 
the beginning and end of a block of procedural 
statements (they may be DSL or FORTRAN state­
ments). Input and output names may be specified 
on the PROCED card to allow the procedural state­
ments to be sorted as a block relative to other DSL 
statements. 

PROCED 

10 

20 
30 

ENDPRO 

For example: 

TEMP = BLOCKA (TEST, IN) 
IF (TEST) 10, 10,20 
TEMP = LIMIT (PARI, PAR2, IN) 
GO TO 30 
TEMP = IN + TEST 
CONTINUE 

During the sequencing of DSL statements, the 
above procedural statements will be treated as a 
single functional block with output TEMP and in­
puts TEST and IN, as illustrated in Fig. 6. The 
order of the statements within the procedural block 
remains unchanged. 

Macro-Generation. Pseudo-operations MACRO 
and ENDMAC, which are punched in columns 

IN 

:1 III TEMP 
TEST 

BLOCKA 
Figure 6. 
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1-6, are used to define a macro block. One may 
think of a macro as a repeatable procedural block 
with parameter variations. This is best illustrated 
by example. The following statements constitute a 
macro-definition: 

1-6 
MACRO 

ENDMAC 

7-72 
OUT = FILTER (VI, V2, K, IN) 
VI = (IN - V2)/K 
V2 = INTGRL (0., VI) 
OUT = V2 + O.5*VI 

During the definition of the macro, no language 
statements are produced. The name of this macro, 
FILTER, must be unique. However, the output 
name OUT and the input names, VI, V2, K, and 
IN, are dummy symbols which will be replaced by 
the actual names specified at the time when the 
macro is used. The subsequent appearance of the 
statement 

LINE 1 = FILTER (AI, A2, TAU,XIN) 

will cause the following three statements to be gen­
erated in-line: 

Al = (XIN - A2) /TAU 
A2 = INTGRL (0., AI) 
LINEI = A2 + 0.5* Al 

Just as in the case of the procedural block, these 
statements will be sequenced as a single functional 
block with LINEI as output and AI, A2, TAU and 
XIN as inputs (see Fig. 7). The statements within 
the block are not sorted. Both DSL and FOR­
TRAN statements may appear within a macro. 

At 

~I A2 LINEl 

TAU : 
.. 

XIN 

Figure 7. 

Implicit Function Block. DSL/'90 provides an im­
plicit function block called IMPL for the solution of 
an implicit equationf(y) = 0 expressed in the form 
of y = f(y). Clearly some iterative technique must 
be employed. These iterations must be performed 
within each integration interval until a convergence 
criterion is satisfied. The program for IMPL uses 
the direct iteration method developed by Wegstein. 
If there is no convergence after some preassigned 
maximum number of iterations, the simulation of 
the problem is terminated with appropriate diag­
nostic printout. 

To use the implicit function block, one writes t.he 
DSL statement, 

Y = IMPL (YO, ERROR, FOFY) 

followed by the set of DSL or FORTRAN (or bOllh) 
statements evaluating FOFY. Y, YO, ERROR 
and FOFY are symbolic names selected by the user. 
The DSL/90 system then sets up the necessary 
iterative loop. Let us illustrate by solving the im­
plicit equation 

C . (e Y - 1) 
y =-----

e Y 
(C is some constant) 

One simply writes: 

Y = IMPL (YO, ERROR, FOFY) 

A = EXP(Y) 

FOFY = C* (A - 1.0) / A 

The DSL/90 translator will automatically gener­
ate the following statements: 

30001 Y = IMPL (YO, ERROR, FOFY) 
IF (NALARM .LE.O) GO TO 30002 
A = EXP(Y) 
FOFY = C* (A - 1.0) / A 
GO TO 30001 

30002 CONTINUE 

Note that three statements, and only those three, are 
added to the ones written by the user. The first time 
the IMPL routine is entered, NALARM is set to 
one, and Y is given the initial guess YO. After eaeh 
calculation of f(y), program flow returns to the 
IMPL subroutine where the convergence criterion is 
tested. If satisfied, NALARM is set equal to zero 
and y assumes the most recently calculated value of 
f(y). Otherwise the iteration continues. 

User-Supplied Functional Blocks. Although DSL/ 
90 provides an extensive library of operational 
blocks, there are occasions when special blocks are 
required to simulate specific process elements. 
These special blocks are programmed by the user as 
subroutines either in FORTRAN or MAP and 
simply added to the data at the time the simulation 
run is made. The user may treat these special blocks 
like all other DSL library blocks, interconnecting 
them to build a complex system model. 

As an example of the use of special blocks, con­
sider the modeling of the analog-to-digital convertler 
shown as a nonlinear stepwise quantization in Fig. 
8. If no such general block existed in the DSL li­
brary, it would be difficult to construct such a char­
acteristic from the standard blocks available. How-
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--------------~~--------------~XIN 

Figure 8. 

ever, the quantization effect is easily modeled by the 
following FORTRAN statements: 

FUNCTION QNTZR (P, XIN) 
QNT = AINT (0.5 + ABS (XIN)/P) 
QNTZR = SIGN (p* QNT, XIN) 
RETURN 
END 

The parameter named P containing the value of the 
quanta step size is the only parameter supplied to 
the QNTZR block. This value of P is entered into 
the simulation program in exactly the same way as 
any other DSL parameter-on a PARAM card. 
Note also that the two blocks AINT (for truncation) 
and SIGN (for transfer of sign) are standard sub­
routines of the FORTRAN library. The above 
FORTRAN subprogram for the quantizer may be 
entered directly with the data cards for the simula­
tion run, or as an alternative, it may be compiled 
independently and the resulting machine language 
deck (binary deck) added to the data deck. This 
functional block may even be added to the perma­
nent DSL library by simply loading it on the library 
tape. In fact this was the case with the QNTZR 
block when we found it to be sufficiently useful to 
warrant a place in the DSL library. The ease with 
which a difficult nonlinearity has been modeled in a 
few lines of FORTRAN coding is quite apparent 
and typifies the flexibility of DSL/90 for handling 
nonlinear functions and special blocks. 

Arbitrary Functions. DSL/90 provides two func­
tional blocks, AFGEN and NLFGEN, for handling 
arbitrary functions of one variable. The x, y coor­
dinates of the function points are entered sequen­
tially following an identifying label and the symbolic 
name of the function, e.g.: 

1-6 7-72 
AFGEN FCI = -10.2,2.3, - 5.6,6.4, 1.0, 5.9, etc. 

Although the total number of data storage locations 
is necessarily fixed by machine size, there is no re­
striction on the number of points one may use to 
define any function. The only requirement is that 
the x coordinates in the sequence x\, YI, X2, Y2, .. ' 
are monotonically increasing. Any number of arbi­
trary functions may be defined, identified only by 
their symbolic names assigned by the user. As an 
example, the DSL statement Y3 = AFGEN (FC1, 
XIN) will refer to the function called FC 1. AFG EN 
provides linear interpolation between consecutive 
points, while NLFG EN uses a second-order La­
grange interpolation formula. 

Tabular Data. This feature of DSL/90 allows 
blocks of data to be tr"ansmitted to the UPDATE 
subroutine in tabular form. In the construction of 
a special block, the user may have to consider sets of 
initial conditions, history and input parameters. 
This DSL/90 feature will eliminate the need for a 
lengthy subroutine argument string. To illustrate, 
suppose we wish to build a special block called 
SPEC which requires two initial conditions and 10 
parameters. We begin by writing the following two 
DSL statements: 

1-6 7-72 
STORAG IC(2), PAR(10) 
TABLE IC(I) = 2.0,IC(2) = 0.0, PAR(l) 

= 4., PAR(2-10) = 9* 1.5 

The first statement instructs the DSL/90 system to 
assign a total of 12 locations-2 for the array IC 
and 10 for PAR. The second statement illustrates 
the manner in which numeric values are entered into 
these reserved locations. Now, when we subse­
quently use a statement such as 

YOUT = SPEC (lC, PAR, XINPUT) 

DSL/90 system will replace the names IC and PAR 
with the addresses of the first locations of the arrays 
IC and PAR respectively. Obviously, the user when 
programming his subroutine SPEC must realize that 
the first two arguments in SPEC are location point­
ers to his arrays. His subroutine could begin with 
the following: 

FUNCTION SPEC (LOCIC, LOCPAR, XIN) 
COMMON /CUR V AL/C(l) 
I = LOCIC 
J = LOCPAR 

CURV AL is the labeled common where the current 
values of all variables are stored, and I and J are 
indices referencing the first initial conditions IC 
and parameter values PAR. 
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System Features 

DSLj90 System Organization~ The DSL/90 Oper­
ating System is separated into two major functions: 
language translation and model simulation. Each 
function operates independently under standard 
IBSYS control but as one continuous single-pass 
operating system. The transition is made by having 
the translator develop on an IBSYS scratch tape all 
the elements of a standard IBSYS job as well as the 
representation of the model to be simulated. This 
tape is then switched in as the standard IBSYS input 
for compilation and execution to complete the simu­
lation. Diagnostics are printed if errors are found 
in translation or simulation. Elements which may 
appearas input to the translator are: 1) DSL/90 
problem-oriented language sentences to describe the 
model, 2) data input to the model for parameter 
values and control of the simulation and output, 3) 
binary and BCD subroutines and functions supplied 
by the user for the simulation, and 4) appropriate 
controls to load binary or BCD subroutines and 
functions from a library tape. The entire system 
may be placed at any level of a standard batched 
IBSYS run. Three additional tape drives are re­
quired-two auxiliary and one for plotting. 

DSL/90 may be run as an independent program 
or it may be used as a subprogram of a conventional 
FORTRAN program for control purposes. 

Sort. A nonprocedural input language such as 
DSL/90 transfers the responsibility of establishing 
the execution sequence from the user to the pro­
gram. To accomplish this DSL/90 alters the se­
quence of input statements according to the rule: an 
operational element (or statement) is properly se­
quenced if all its inputs are available either as input 
parameters or· initial conditions or as previously 
computed values in the current iteration cycle. Un­
specified algebraic loops are identified and, if any, 
the run is halted. The result of this sequencing oper­
ation is a properly organized FORTRAN IV sub­
program. 

Main Program Control. DSL/90 provides for call­
irig the simulation routines from a MAIN program 
specified by the user. Hence the actual digital simu­
lation may be placed under control of a FORTRAN 
routine compiled at execution time. This feature 
allows for testing of response conditions, matching 
boundary values, and dynamic: alteration of param­
eters, initial conditions, or run control data between 
parameter studies. 

Centralized Integration. By use of the block name, 
INTG RL, a user may specify that centralized inte­
gration is desired. The translator sets up statements 
so as to compute all inputs to the integrators but 
bypass computation of outputs until the end of the 
iteration cycle. At this time, all integrator outputs 
are updated simultaneously. A choice can be made 
between the 5th-order Milne Predictor-Corrector, 
4th-order Runge-Kutta, Simpson's Trapezoidal, or 
Rectangular Integration methods. The first three 
allow the integration interval to be adjusted by the 
system to meet a specified error criterion, a factor 
which allows it to take large or small steps depend­
ing on the rate of change of one or more variabl(!s. 
There is provision in DSL/90 for the user to supply 
his own integration scheme, which mayor may not 
be centralized. 

Dynamic Storage Allocation. Data in DSL/90 is 
stored in a single vector including current values of 
structure variables and table values for function 
generators, integration history, error bounds, 
STORAG variables, etc. The storage is allocated 
dynamically (i.e., at execution time) according to 
what portions of the simulator are used and how 
many integrators, tables, and structure variables are 
in the simulation model. Standard DSL/90 blocks 
are loaded only if used. 

APPLICA TIONS 

Having illustrated operational features of the 
DSL/90 digital simulation program, we will now 
draw upon the previous introduction to show how 
DSL/90 has been flexibly applied to simulation 
problems. Three specific simulations will be con­
sidered: 1) a biomedical block notation problem 
involving a respiratory servomechanism; 2) a proc­
ess analysis problem involving the simulation IOf 
heat transfer dynamics of a recirculating furnace 
used in the glass industry; and 3) the simulation of 
the flight dynamics of a portion of the SATURN V 
booster rocket. 

DSL/90 provides special programming features 
such as different integration methods, sorting, 
special blocks, etc., which make it attractive to the 
user for continuous system simulation. Several of 
these features will be illustrated in the examples to 
follow. 

Application No. i-Respiratory Servo Simulation 

This problem involves evaluating the response of 
a proposed model for respiratory control of CO 2 
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partial pressure in the venous and arterial blood 
streams of a human. De Fares et al performed the 
original study on an analog computer and repre­
sented the basic CO2 control mechanism in respi­
ration by the three-compartment model shown in 
Fig. 9. Using the original study as a guide, this first 
example will illustrate the ease of handling conven­
tional analog simulation problems using DSL/90. 

LOCAL 

CO2 

Figure 9. C02 control model. 

The CO 2 control system operates as follows: The 
alveolar tissue in the lung serves as an exit sink for 
CO 2 production and possesses both CO 2 capacity 
and conductance characteristics. In a similar man­
ner, body tissue can be considered as having an 
equivalent CO2 capacitance and conductance. CO2 

produced by the body is partially stored in the local 
body tissue, raising the local body tissue partial 
pressure of CO 2 • The CO 2 produced is simulta­
neously diffused through the tissue and picked up by 
the blood stream (venous path). The CO 2 is then 
carried to the lung and subsequently diffused to the 
alveolar tissue, raising its CO 2 partial pressure. Si­
multaneously, CO 2 is produced in the region of a 
receptor (C02 detector) in the medulla. This CO 2 is 
similarly diffused and carried to the alveolar tissue 
through the venous blood stream. It can be shown 
that the basic controlled variable in this system 
model is the partial pressure of CO 2 in the receptor 
tissue located in the medulla. 

If CO 2 -enriched air is also brought into the lungs, 
it simultaneously affects the CO 2 diffusion and 
buildup in the alveolar lung tissue. De Fares et al 
have shown that the partial pressure of CO 2 in the 
receptor can serve as an effective mechanism for 
controlling diffusion of CO 2 from the receptor and 
from inspired air. In this study, the CO 2 partial 
pressures of mixed venous blood flow and body 
tissue will be assumed equal. Similarly, the CO 2 

partial pressures of arterial blood flow and alveolar 
lung tissue will be assumed equal. . 

By introducing disturbances in the CO 2 content of 
inspired air, the dynamics of such a control model 
may be studied. The objective of this model is to 
hold constant th~ partial pressure of the CO 2 in the 
receptor by controlling the diffusion conductance of 
CO 2 from the receptor area and of the inspired gas 
to the alveolar lung tissue. Thus, the CO 2 partial 
pressures of alveolar tissue and local body tissue will 
respond dynamically to changes in CO 2 content of 
the inspired air. 

Network Model. Because of the dynamic analogies 
existing between the gas dynamics of the CO 2 dif­
fusion model above and conventional circuit dy­
namics, it is convenient to represent the biological 
model by an equivalent circuit model. Figure 10 
shows three capacitors tied together with variable 
nonlinear conductances, which represent the dif­
fusion characteristics of the separate tissue/blood 
interface. The capacitors represent local tissue CO 2 

C02 RECEPTOR LUNG BODY TISSUE 

Figure 10. Equivalent network model. 

capacity, and the voltages become the respective 
CO 2 partial pressures. The voltage source E repre­
sents the partial pressure of CO2 -enriched inspired 
air and is defined by the following relation: 

E Fi (B-47) 

Fi % CO 2 content in inspired air 

where B = atmospheric pressure in mm Hg. 

Table 3 lists the electrical network parameters 
and variables together with their physiological 
equivalents. 

Digital-Analog Simulation. As a first example of 
DSL/90 application flexibility, conventional analog 
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Table 3. Electrical and Physiological Equivalents, Application No.1 

Elec. Physiological 

Symbol Qkantity ':'Units 

G I CO
Z 

conductance-air to lung tissue Liters (gas)/min/mm Hg (gas) 

GZ CO2 conductance-body tissue to lung Liters (COZ)/min/mm Hg (COZ) 

G3 COZ conductance-receptor to lung Liters (COZ)/min/mm Hg (COZ) 

C j 
Capacity of lung tissue Liters (gils)/mm Hg (gas) 

C z Capacity of body tissue Liters (COZ)/mm Hg (COZ) 

C 3 
Capacity of receptor tissue Liters (COZ)/mm Hg(COZ) 

-
VI COZ partial pressure of lung tissue mm Hg (CO

Z
) 

V 
Z 

COZ partial pressure of body tissue mm Hg (CO
Z

) 

V3 COZ partial pressure of receptor tissue mm Hg (CO
Z

) 

E Partial pressure of COZ in inspired air mm Hg (CO
Z

) 

14 Bony COz production Liters (COZ)/min 

IS Receptor COZ production Liters (COZ)/min 

II ~02 diffusion from inspired air to lung Liters (gas)/min 
tIssue 

I Z 
~OZ diffusion from body tissue to lung Liters (COZ)/min 
tIssue 

13 CO Z. diffusion from receptor tissue to 
lung tissue 

Liters (COZ)/min 

':'Units are liters BTPS, m. m. Hg, minutes 

block notation will be used to program the simula­
tion. Figure 11 represents a DSL/90 digital-analog 
simulation block diagram of the network model 
shown in Fig. 10. Since DSL/90 operations are in 
floating-point arithmetic, no problem scaling is re­
quired and the parameters may be entered directly 
in terms of their conductances are given by the fol­
lowing relations: 

where t/; is proportional to the slope of the experi­
mentally determined steady-state cardiac output 
versus CO 2 partial pressure curves-liters (C0 2 )/ 

min/mm 2 Hg (C0 2 ); and e == initial value of G, 
liters (COi)/min/mm Hg (C02 ), 

Using data from respiratory experiments, the fol­
lowing parameters and initial values hold for the 
simulation: 

VI (0) 
V2 (0) 
V3(0) 
t/;I 

40.0 
45.0 
45.0 
0.0038 

0.00344 
0.l7 
0.0008 
0.1648 

0.0025 
0.0002 
0.25 

0.0625 
0.0007 
0.001 

The DSL/90 statements which describe this sim­
ulator follow. 

TITLE RESPiRATjOI\ SERVO PROBLEM - ANALOG MODE SOLUTION 6-1-65 RUN 1 

::j,\=;:'-; i.-STEP( TDELAY)) 
hj)K2=E i ~~-Vl 
G;=PSll*V3-THETAl 
11=Gl*ADR2 
Vl=INTGRL(VlIC.(ll+12+13)/Cl) 
ADR4=V2-Vl 
G2=PSI2"V2-THETA2 

Connection 
Statements 

12=G2*ADR4 
V2=INTGRLlV2IC.( 14-12)/C2) 
ADR7=V3-Vl 
63 =PS I 3*V 3- THE T A3 
13=G3*ADR7 
V3-INTGRLlV3IC.( 15-13)/0) 

PARA'I CI-0.00344. C2=u.17. C3=0.000S.... i 
~~k ~:~ :g~ i~;s ~S i~~~ ~~~~: ~6~;; 3~~E ~~~~2 ~: ~~u 7. 6.21. 4 P:~~~ct,~:r. 

CO,'lST 14-0.25. 15=0.0(;1. TOELAY=20.0 
INCON VlIC=40.0. V2IC=45.0. V3IC.45.0 

CO,'lTRL FINTU'l=36.0. DELT-0.05 
RELERR Vl=O.OOl 
:NTEG MILNE 

} 
Run 

Control 

PRINT 001, Vb V2. V3' Gl. G2. G3. 110 12. 13 
PREPAR 0.05. Vl' V2. "3' G1. G2. G3. 11. 12. 13 
GRAPH 6.0. 4.0. TIME. \/lo V2. V3 Print and 
LABEL PAR PRESS 3.0 PRCNT C02 RUN 1 6-1-65 Plot Output 
GRAPH 6.0. 4.0. TIME. Gl' G2. G3 
LAtlEL CONDUCTANCE 3.U PRCNT C02 RUN 1 6-1-65 
GRAPH 6.0. 4.0. TIME. 110 12. 13 
LABEL C02 DIFFUSION 3.0 PRCNT C02 RUN 1 6-1-65 

END 
STOP 
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+ + + 

Figure 11. Digital-analog simulator block diagram. 

Figures 12 and 13 show nonretouched DSL/90 
plots of CO 2 partial pressures and tissue conduc­
tances. Inhaled air containing 3% CO2 was assumed 
for 20 minutes followed by a 20-minute span of 
normal room air with no CO 2 content. 

During the first 20 minutes, the receptor tissue 
(medulla), body tissue, and aveolar lung tissue all 
take up CO 2 • The second 20-minute span shows the 
nonlinear response during purging of body CO 2 • 
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V2 
va 
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B. 16. 24. 

TIME 
32. 40. 4B. 

Figure 12. Par press 3.0% C02 run 1,6-1-65. 

Figure 14 shows part of the results printout and 
input data format. 

After the initial runs were completed, a change in 
the G 3 conductance characteristic was suggested by 
medical research personneL Instead of a linear re­
lationship between G 3 and receptor CO 2' partial 
pressure, a smoothwise increasing empirical func­
tion as shown in Fig. 15 was substituted. To do 

LEGEND 
GI 
G2 

.... G3 

~ CD 
.,; -

CD --------,: 
-N '-'" .-.~ 

N '? 
0 

~ B ,\ x '0 -8 " N ,\ 'N - I:. 

''I 
1\ 

r5 " '.:l \\ 

N .,; cO '.~.:.... ...... ...-.-...-.-- .. 

~ II> 

cD 
B. 16. 24. 32. 40, 48. TIME 

Figure 13, Conductance 3.0% C02 run 1, 6-1-65. 
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*** DSLl9D SIMULATION DATA *** 
TITLE RESPIRATOR'! SERVO PROBLEM - NETWORK MODE SOLUTION &-1-65 RUN 4 

this, it was necessary to redefine the G 3 conductance 
characteristic as the output of an arbitrary function 
generator block as follows: PARA!'. Cl~0.uiJ344') CZ·u.17. C3~u.Ov()8 •••• 

PSIl.O.0038. PSIZ.O.OuZ5. PSI3.0.00002 .... 

THETAI-v.lb41:1. THETA;<=".v&"~. THlTAj= v.vvv7. E·~1.4 

(ONST 14=0.Z5. 15'0.0()1. TDELAy z 20.0 

INCON VIIC'40.0. VZIC·45.U. V3IC'45.1. 

CONTRL FINTI""36.0. DELT.U.v5 

RELERR Vl·O.OOI 

INTfG "ILNE 

PRINT 0.1. VI. V2. V3. GI. 62. G3 

PREPAR 0.05. VI. V2. V3. 61. 62. 63 

LABEL PAR PRESS 3.0 PROH C02 RUN 4 6-1-&5 

6RAPH 6.0. 4.0. TIME. 61. 62. 63 

LAI:lEL CONDUCTANCE 3.U PRCNT C02 RUN 4 &-1-6~ 

FIlD 

T Figure 14a. DSL/90 simulation data. 

T I .~ E VI V2 
O. It.OO,)OE 01 4.5000E 

10.000:-02 1+.1'n7~ 01 4.5036£ 
:?OOOf:-Ql 1+ • (11 (} E 01 4.S0Q7E 
1.000~-01 If. ?"3 f)qE 01 It. 516~F 
It. 0 OOE - C 1 It-. 231.,6 r: 01 4.5225E 
I).OOOE-Ot (+.235'11: 01 4.5?8,st 
6.0f)f")E-,)1 4.2V')OE OL 4.")144E 
7.000~-,,)1 1 .... ?3 /.f")'= 01 4. 5/t-0 1 E 
:' • I) OOE-I) 1 4.2331E 01 4.1)45 'iF 
(}. 000!:-0 1 't. l3 ~ 1,= 01 4.1)t')01E 

1C.OOOE-01 4.~315f 01 4.5'557F 
1.100F: 00 1+.?30 Q ': 01 4.560SF 
1.?00E 00 I ... 2 }'J 1 E 01 4.56'>1': 
1.3001: Of) 1 ... 2295E 01 I t .56Qt)E 
1.400E 00 4.??~'-}E 01 I ... 573i3r: 
1.500~ 01) It. Z 2 g I ... E 01 4.S17QE 
!.600E 00 4.??7C)E 01 4.5819E 
1.700r- 00 1+ • 2271, r- 01 4.:857 C 

1.800E 00 4.227CE ')1 4.SWnE 
1.c)OOr: CO 't.?26 Cj,= 01 /+0 5 9? R E 
2.000E 00 4.~~f)?r:: 01 Ito ')062 f 

4.22 'j iJ E 01 4.5 Q c;/+;: 
~C:;J: 01 It .6f')?'1E 

~.c)00E r)l ~1' •. , " _ .... _ , .... ':>021E 
3.510C:: 01 l~ .00 ~l'=, 01 It. SO 2 3f 
':3. f) ZOE 01 It • C' O:.? :1 '= 01 4.5023E 
3.510r:: 01 14.00?:;~ 01 ' ... 50.::? 3E 
'3 • 51~ or: 01 It. 00 2 ~c:: 01 't.50?3E 
3.5,)f')C:: 01 4.f)0?,")r~ 01 1·.5023E 
1.S60E 01 It. OO? (~i: 01 (~ • (~O 2 3!: 
1.570r: 01 I • • OO? ;:) c 01 4.~0~3E 

1. c:; IV) ,') 1 I, • (' ()? ,~ 01 I •• r; 0 1. 3 f= 
~.['jC)n ()l I~ .(1) ) C\ ,: 01 4.I)O?'3E 
":\.f:,()0 f) 1 4.00~~': 01 1 •• 5021,E 

01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
rq 
01 
01 
Ot 
01 
01 
01 
01 
01 

'!l 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 

DSL/90 ~rJ.1lJlt\TrIJN r I ~1 E 13.1192 

G3 = AFGEN (F3, V3) 

where the G 3 characteristic is given in a sequence! of 
X and F(X) values. 

AFGEN F3 ~ 0.0, .0002,48., .0002,49., J)0021" '" 
50., .00023, 51., .00027, 52., .00031, 
53., .00035,... 54., .00039, 55., 
.00043, 56., .000465, 57., .00048" ... 
58., .00049, .59., .000495, 60., .0005, 
80., .0005 

In addition to the analog model approach shown 
here, two other methods were programmed in DSL/ 
90 involving the network equations directly and 

V3 Gl G2 G3 
4.,)000F 01 6.2000F-03 '5.00001:-02 2.0000'=-04 
4.S030E 01 6.31471=-03 5.0089E-02 2.0060E-04 
4.1)082E 01 6.51321:--03 5 • 0 2 It- 2 E - 02 2.0165~-04 
4.51~!3E 01 6.7232E-03 5.0404E-02 2.02' 751:-04 
It-s192E 01 6. '12 flltE-03 5.0562~-02 2.0:'1831:-04 
It-. !) 24/t-E 01 1.1.7.62E-03 5.0714E-02 2.0437:::-04 

' It-. I) 2 9 / .. E 01 7.3168E-03 5.0861f-02 2.0588!:-04 
4.53 4 2E 01 7.S003E-03 5.1002E-02 2 • 06 8 4 I: - 0 It 
4.5389E 01 7.676')E-03 5. 1137E"':02 2.0777E-04 
4.'1433E 01 7.8468'=-03 5.1267F-02 2.0A67f-04 
4.5 1 .. 76E 01 8.0103E-03 5.1392E-02 2.0953::-04 
I h 5518E 01 8. 16 76E-03 1).1511c;-02 .7..10361=-04 
4.'5558F 01 8.118<)E-03 5.1628E-02 2.11I'1E-04 
It .55S6E 01 e • 1.6 4 It C - 03 '5.1 '( 39:'=:-02 2 • 1 1 <; ~ r:- i) 4 
I •• 5 (>3 3 E 01 8.6043E-03 5.1846E-02 ?1265':-0/.,. 
I • • ') f~ f, P, E 01 r.7':\89f-03 I) • 1 ') I. () E - 0 ? ?1336E-(Y.,. 
I •• '5 -, 0 2 E 01 8 • 8 6 13 ,'t [ - 0 3 5.2047r:-02 1 • l't 0 4 r: - () It 
I • • », 3 5 F 01 8.99Zer::-03 5 • 2 1 It 2 ~ - 0 2 2 • 11.,. 70 r: - 0 It 
I .. • ') 766 E 01 9.11251:-03 '1.2233 c -02 2.1t)33E-04 
I • • 57 ') 7 E 01 9.2276f-03 5.23211:-02 2. I 593F-()/.,. 
4.SR26F= 01 9.1382E-03 '5.240C;~-02 2.1652':-04 
It. ~'" 't:::r::-03 5 • 2 It- 86 E - 02 2.1708E-/V. 

').2'61E-02 2· 1 -. 

...... ,,,,", ~ --

.• :Jut9E Ul, 

It. 501 9E 01 6.L. JU~~8E-u., 

It. 5 C 19 F. 01 6.271'5f-v~ "Co ?OO38E-04 
It. '501 q E 01 6.27!'3E-03 5.00'57E-02 2.0038~-04 

4.1)01<)E 01 6.2l14f-03 5.00'J7E-02 2.00~!3E-04 

lh 50 t 'H: 01 6.27L41:-03 5.1Y057~-02 2.00 ';!8 E-O/+ 
It. 5019 E 01 6 • :? 7 l't 1= - 0 3 5.0057f:-()2 2.0038(-04 
It. 50 19F 01 6.2713(-03 5.0057E-02 7..0038~-04 
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4 • " () 1 'I f 01 6.2713~-03 5.0057f::-01. 2.00-::\A=-0/ .. 
4.S0I.CJE 01 6.2711[-03 5.0057E-02 2.00'l8~-04 

4."nlc)F 01 6.2lt?E-01 5.0057f:-0? 1.. 00 ~17~-04 
l ... '50 I (] F 01 6.?.7!2E--03 5.0057E-02 2.00:r/~-04 

SECONDS 

Figure 14b. Respiratory servo problem-network mode solution. 
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Figure 15. G3 conductance characteristic. 
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fundamental compartment models. This last ap­
proach has proven particularly attractive since the 
biomedical user can directly program his own simu­
lation problem without learning an artifax tool such 
as analog computer notation, network analysis, or 
FORTRAN programming. These techniques result 
in a major reduction in the user time required from 
initial problem coding to achieving final results. In 
addition, complete printouts and digital plots are 
available for each problem run, considerably simpli­
fying the simulation documentation problem. 

Application No.2-Glass Tank 
Recirculating Furnace 

This second example involves the analysis of the 
heat transfer dynamics of a recirculating furnace 
used for preheating combustion air on a glass tank. 
The problem illustrates the ease of using generalized 
block notation in DSL/90 for performing contin­
uous system simulations. In this case, the example 
was drawn from the industrial process control field. 
The technique, however, is broadly applicable to 
any continuous system analysis problem. 

As shown in Fig. 16, air is forced through a large 
preheating chamber, called a checker, filled with 
bricks cross-stacked to allow passage of the air 
around the brick surface, thereby preheating the 
cold air from the brick. The preheated air is then 
mixed with fuel, fired, and the resultant flame front 
melts the glass material in the tank. The hot com­
bustion gases are forced through another checker, 
heating up the cold brick, and finally forced out the 
stack. After a period of time, usually about 15 
minutes, the flow direction valve is reversed so that 
the cold checker that had been heated by the hot 
gases now becomes the preheating checker for the 
cold incoming air. Similarly, the previous hot 
checker that had been cooled by the cold input air 
now receives hot combustion gases which heat it up 

[] GLASS 
TANK 

REVERSING 
VALVE HOT 

CHECKER 

,Figure 16. Schematic diagram-reversing furnace. 

again. The object of the simulation is to study the 
heat transfer dynamics of the recirculation furnace 
during the heating and cooling cycles induced by 
air flow reversals. 

The first step ~as to divide each checker chamber 
into three blocks, as shown in Fig. 17, effectively 
breaking a continuously distributed system into a 

HOT 

CHECKER 

jTG~ 
~~I 
jTatJ 
~~ 
jTG~SI 
~RIKI 

TAIR 

GLASS 
TANK 

COLD 

CHECKER 

TBRIK6 

TGAS6 

Figure 17. Reversing furnace-end view. 
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sequence of lumped-parameter segments. The non­
linear heat transfer relationships for each block are 
given by Eqs. 1 and 2. 

d 
dt P2 V (TA T GAS = (TAF I TIN - (TAF I T GAS 

+ hA I (T BRICK - T GAS) 

+ K [(TBRICK + 460)4 

- (T GAS + 460)4] (1) 

:t M (T B T BRICK = hA 2 (T BRICK - T AMB) 

where (TA 

(TB 

V 
M 

P2 

FI 
Al 
h 
K 

.. 

TBRICK 

T GAS 

TIN 

- hA I (TBRICK - T GAS) 

- K [(TBRICK + 460)4 

- (T GAS + 460)4] 

CHECKER 

BLOCK 

Figure 18. Checker block. 

= specific heat of the gas, 
= specific heat of the brick, 
=: volume of the checker, 
= mass of the checker, 
=: gas density, 
= gas flow, 

(2) 

= heat-transfer surface area of brick, 
=: conductive heat-transfer coefficient, 
= radiation heat-transfer coefficient, 
= checker brick temperature, 
= checker gas tern perature, and 
=: input gas temperature to checker. 

These differential equations were programmed in 
FOR TRAN and used to define the characteristics of 
a checker-block, shown in Fig. 18. 

The following assumptions and approximations 
hold for Eqs. 1 and 2. 

Assumptions 
1. Heat transfer by radiation and convection. 
2. Temperature of checker is a function of time 

and space (I-dimensional). 

3. Checker temperature is uniform in any plane 
perpendicular to flow. 

4. Gas temperature is uniform in any plane per­
pendicular to flow. 

5. Brick thermal conductivity is infinite. 

Approximation 
1. Distributed temperature in each checker is rep­

resented by a lumped parameter system of three 
stages. 

The generalized block of Fig. 18 has one: input, 
the entering gas temperature, and two outputs, the 
exiting gas temperature and the internal brick 
temperature. Once the block has been programmed 
and checked out, the user can connect any numb(~r 
of these together to represent the system by simply 
using the DSL/90 statement: 

TGAS, TBRIK = CHEKR(TGIC, TBIC, TIN), 

where TGAS 
TBRIK 

TGIC 
TBIC 
TIN 

output gas temperature of checker, 
internal brick temperature of 
checker, 

= initial gas temperature, 
= initial brick temperature, and 
= input gas temperature. 

Figure 19 shows the block model of one complete 
checker. Three checker blocks have been used 

~GAS FLOW 

r----~ 

Figure 19. Block model of checker gas flow. 

together with three switching blocks that revers(! 
the flow direction through the blocks. 

Now if this block model is used as a model of 
each checker, the DSL/90 statements which repre,­
sent this system can easily be written by the user 
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in terms of the basic checker blocks as follows: 
.. ••• STRUCTuRE STATEMENTS 

* " •• ChECKER 5~'11 TCrlt:S 
C1 1:\= j,\S;'; I TRIGR.TAIR.TGAS2) 
C2: ~:o I.,Si/1 TR IGR. TGA:;1 .TGA:;3) 
C 3, r;. I 1';:;;\( T R I GR. TGAS2. TCOI~8) 
e,,: 1';0 I :-;,,;( (TR I GR. TCO:-l6. TGAS5) 
e 5 ,1';= ,1\5;': i TR IGR. TGAS4 .TGAS6) 
C6; 1';- iNS;" TR I (,R. TGAS5. TAl R) 
T R I GR.-O. 5+S TEP ( TREVRS) 

* ••• HOT CHECKER BLOCKS 
TGASltT~RiKI-CHEKR( TGI IC.TiH IC.Cl IN) 
TGAS.2. TbRI K2.CHEKR (TG2IC. TI:I21C .C21 N) 
TGAS3. TeRI K3-CHEKR« TG31 C. T831C. C31 N) 

* ••• COLD CHECKER BLOCKS 
TGAS". TtlR I K4.CHEKR (TG4IC. TB41 C. C41 N) 
TGASS. TI:lRI KS.CnEKR (TG5IC. TB51 C. C51 N) 
TGAS6. TI:!RI K6.CH!::KR (TG6IC. Te61 c. C6IN) 

* ••• DATA 

PARAM Fl-120000 •• SIGMAA-O.24. SIGMAB.0.24 •••• 
TAIR.360 •• TCOMB-2800 •• TAMB-120 ••••• 
M-IOOOOO •• AI-15000.. AZ-300 .... . 
K.4.5E-06. H-IO.. v-sooo .... . 
TiiEVRS-15. 

INCON TG1IC-850.. TG2IC-13i)() •• TG3IC-1800 .. 'OO 

TElllC-1600 .. TI:!ZIC-ZOOv •• T63IC-2501l .... . 
T(,4IC-Z300 .. TI,;5IC-1900 •• TG6IC-UOII .... . 
TtI4IC-1300 .. TtlSIC-I00u .. TB6IC-700. 

PRINT 0.1' TGASl' T(,AS2' TGAS3' TG"S4' TG"&5. TG"&6 •••• 
TBRIKI. TBRIK2. TBRIK3. TBRIK4. TBRIK5. TBRIK6. TRIGR. ClIN 

CONTRL F I NT IM-30 •• DELT-O.ul 

pr<~PAR 0.05. TGAS3. TG"S6. T6RIK3. TBRIK6.TG"Slt TG"&4. TdRIKlt TBRIK4 
GRAPH 6.0. 4.0. TIME. TGAS3t TflRIK3 
LABEL 3RD CHECKER BLOCK TEMP& RUN 4 
GRAPH 6.0. 4.0. TGAS6. TBRIK6 
LABEL 6TH CHECKER BLOCK TEMPS RUN II 
END 
STOP 

Note that the parameter and variable names are 
almost direct symbolic equivalents of the physical 
notation used for describing the furnace. 

Figures 20 and 21 show the actual plotted results 
of temperature variations at the outlets of the hot 
and cold checkers for a IS-minute flow reversal 
cycle. Advantages of this approach in addition to 
those already mentioned in example no. 1 include 
the ability to expand the simulation easily to include 
control system blocks and other system dynamics 
without disturbing the existing furnace simulation. 
This feature has proven particularly powerful in 
analyzing complex industrial processes. 

Application No.3-Saturn V Booster Rocket 

Vehicle Description. This study applies digital simu­
lation to the flight dynamics analysis of a large space 
vehicle booster. The problem illustrates the use of 
DSL/90 algebraic notation stat~ments. In this 
study, the system example was drawn from the aero­
space industry, but the use of DSL/90 algebraic 
notation can be applied to a broad range of prob­
lems including parts of the previous two examples. 

The vehicle used in this study was the SA TURN 
V launch vehicle for the APOLLO lunar mission. 
As shown in Fig. 22, the vehicle configuration con­
sists of three booster stages and the APOLLO 
spacecraft. The overall length is 360 feet and, fully 
fueled, the vehicle weighs approximately 6 million 
pounds. The first, or S-IC, stage is powered by five 
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Figure 20. Third checker block temperatures, run 5. 
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~ 
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5. 10. 15. 
TIME 

20. 26. 30. 

Figure 21. Sixth checker block temperatures, run 5. 

F-l engines, each of which provides a thrust of 1.5 
million pounds. The four outboard engines are 
swiveled and provide for thrust vector control 
during powered flight. The SATURN V vehicle has 
an independent inertial navigation and guidance 
system from that in the APOLLO spacecraft in 
addition to a control computer and required sen­
sors. 

Trajectory. This simulation is concerned with the 
analysis of flight dynamics from launch through 
first-stage burnout. The booster-stage flight profile 
is shown in Fig. 22 and consists of a gravity turn for 
150 seconds with separation occurring at approxi­
mately 60,000 meters altitude and a 2350-m/sec 
velocity. The rigid body equations of motion that 
were simulated form a perturbation set with respect 
to a rt!ference frame moving along the nominal tra­
jectory as shown in Fig. 23. 

Axes X), X 2 X3 form an orthogonal set, with X 2 

aligned along the nominal velocity vector and axes 
X), X 2 lying in the nominal boost plane. The fuel 
sloshing dynamics of the first stage propellants were 
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Figure 22. SA TURN V configuration and flight profile (from Ref. 5). 

Nominal 

Nominal I rUJ.""UII Y ...... 

point 

Figure 23. Reference frame axes (from Ref. 6). 

included as well as the dynamic effects of elastic 
bending along the booster longitudinal axis. The 
attitude control system was also included in the 
simulation, together with the dynamics of the gim­
balled thrust VECTOR control system and hydrau­
lic actuators for the engines, as shown in Fig. 24. 

Since the defining equations of vehicle motion are 
far too complex for the purposes of this paper, the 
reader is referred to the basic documentation for the 
complete problem description. To illustrate the 
features of DSL/90, only a small portion of the 
larger problem will be treated-the pitch axis con­
trol system. Figure 25 is an expanded description 
of the control system filters, together with actuator 
and engine dynamics. The command signal filte:r 
block processes the pitch command signal from the 
control computer prior to applying it to the engine 
gimbal hydraulic actuators. 

In order to investigate booster flight dynamics, a 
primary wind disturbance was applied to the vehide 
during the first stage of powered flight as shown in 
Fig. 26. Horizontal wind loading was assumed, 
with varying azimuth angles for wind heading. 

Referring to Fig. 25, the transfer functions for 
the command signal filter and engine dynamics can 
be expended in Laplace notation to yield the equiva­
lent linear operational equations: 

S2{j2 = K I {j21 u + K 2S {j2 + K 3{j2 (3) 
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Figure 24. Simulation signal flow diagram (from Ref. 5). 

S2P2 = (K32P~ - K 31 (2)S + (K34P~ .... K 33(2) 

1 + (K36 P2 - K 3S(2) S (4) 

Equations (3) through (5) can be directly pro­
grammed as DSL/90 statements as follows: 

where S is the conventional Laplace operator. 

* PITCH ATTITUDE CONTROL SECTION 
BET2CU == - (AO*(PH12+ PH12FP) 

+Al*(CH12D+PH12D 
+PH2DFR)) 

From Fig. 24, the expression for the unfiltered 
pitch command signal P~ I U becomes: 

P21 11 
= ..... [aO(cI>2 + cI>/P) + alex + ~2 + ~l')] (5) 

BET2CD = INtG RL(B2CDO, K 1 *BET2CU 
+ K2*BET2CD + K3*BET2C) 
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COMMAND ACTUATOR 
SIGNAL a ENGINE 
FIL TER DYNAMICS 

/32
C I U 

Kl K32S
2

+ K34S + K 36 

S2+K2S +K3 {.3.C S3+K3IS2+K33S +K35 2 

Figure 25. Pitch axes control system. 

BET2C = INTG RL(BET2CO, BET2CD) 
BET2DD= K32*BET2CD - K31 *BET2D 

+ K34*BET2C ... 
- K33*BET2 + INTG RL(IC53, 
K36*BET2C - K35*BET2) 

BET2D = INTGRL(BET2DO, BET2DD) 
BET2 = INTGRL(BET20, BET2D) 

/32 

For the complete simulation, over 400 DSL/90 
statements were required, not including the function 
generators and data statements. Both block and 
algebraic notation were used for describing the 
simulation configuration. The above small portion 
of problem coding is an excellent example of the 
ease of using both algebraic and block statements 
in DSL/90. Note the use of symbolic names for 
variable and data names which closely resemble the 
actual names. This feature has proven particularly 
helpful for large simulations . 
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The SATURN V flight dynamics were simulatled 
for the first 120 seconds of powered flight. Figures 
27,28 and 29 show resultant DSL/90 plots for three 
of the system variables being studied. 

The SATURN V simulation demonstrated several 
important features of digital simulation. First, a 
complex nonlinear aerospace problem could be 
successfully solved in DSL/90 by engineers rela­
tively unskilled in programming. Second, many 
problems require both algebraic and block notation. 
The ability of DSL/90 to handle both of these re­
quirements was amply proved. Third, problem 
solutions could be obtained quickly with a minimum 
of setup time. The original programming I'equified 
approximately 16 hours of an engineer's time for 
problem setup. Each run of 120 seconds flight time 
required approximately 25 minutes of IB]\1 7094 
computer time. In addition to the above featuf(!s, 
DSL/90 allowed the user to model his problem in 
segments, checking out portions of the simulat,ed 
vehicle independently, and then to hook these se:c­
tions together. As an example, the trajectory equa­
tions form one section of the simulation, pro­
grammed in algebraic notation, of which the control 
system is another independent part programmed in 
block notation. 

___ ---- 75 m/s 

--------------~----~------~----~------------~-----,~ o 20 40 60 80 100 120 140 160 

TIME (SECONDS) 

Figure 26. Primary wind disturbance (from Ref. 5). 
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Figure 27. Pitch axis angular acceleration . 
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Figure 28. Velocity along X3 axis. 

CONCLUSIONS 

Within IBM, DSL/90 has been used extensively 
in many different application areas including circuit 
design, mechanical dynamics, process analysis and 
control, servo design, aerospace flight simulation 
and biomedical modeling. Simplicity of the input 

language, clarity and completeness of both print and 
plot output, and the ease with which data is handled 
are some of the features which have made DSL/90 
attractive to an increasing number of problem 
solvers from both camps-analog and digital. In 
DSL/90 workshops, it was observed that engineers 
with hardly any analog or digital computer ex-
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Figure 29. Engine gimbal angle for pitch axis. 

perience successfully "programmed" in DSL/90 at 
the end of the first two-hour session. With this 
quick "shot" of confidence and further experience, 
many have proceeded to more difficult problems 
using the more advanced features of the language. 

The examples shown indicate only a few of the 
broad range of problem areas to which DSL/90 can 
be applied. In addition to the above examples, 
DSL/90 has successfully simulated the process 
dynamics and control system responses for a paper 
machine dryer section control system. In this study, 
actual process noise gathered at the plant site was 
introduced into the simulation through the MAIN 
routine. Several nonlinear process and control ele­
ments were successfully modeled using the external 
block features of DSL/90, including nonlinear 
process controllers and scanning moisture gauges. 
DSL/90 was recently used for the simulation of an 
ammonia reaction process involving two-point 
boundary value matching. In this case, severe simu­
lation problems were created by the fact that the 
system had two regions of time response, each 
governed by different differential equations and in­
terfacing through initial values. Both the features 
of the "MAIN" program and the ability to intro­
duce logical functions into the DSL/90 block struc­
ture were extensively employed. 

Many of these simulation areas previously han­
dled with analog techniques have long been troubled 
with problems of component reliability, accuracy, 

repeatability, and a lack of flexibility in modeling 
basic dynamic components and phenomena. In 
some respects, the trend toward digital simulation 
methods is a result of seeking answers to these;: 
problems. Some of the advantages of digital simu·· 
lation as observed in the above application studies 
can be listed as follows: 

1. Problem accuracy control. 
2. Elimination of problem scaling. 
3. Simulation run repeatability. 
4. Reliable digital simulation elements. 
5. Significantly reduced problem prepara­

tion time and simulation checkout timc~. 
6. Simple problem coding. The majority 

of detailed circuit knowledge for analog 
programming is unnecessary. 

7. Easy performance by the digital com­
puter of some operations which at best 
are only approximated by analog com­
puters. 

8. Effortless provision of positive docu­
mentation of silJlulation configuration 
and parameter values. 

To date, digital simulation techniques have shown 
themselves easy to learn, efficient to operate, accu­
rate, and extremely flexible. They provide the 
engineer with an easy and quick method of digitally 
simulating complex systems, familiar block notation 
concepts, and the power of digital compultation 
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methods. The result represents a significant new 
simulation tool for engineering analysis and design. 
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