
DSL/90-A DIGITAL SIMULATION PROGRAM
FOR CONTINUOUS SYSTEM MODELING

W. M. Syn
Systems Development Division

and
Ro bert N. Linebarger

Data Processing Division
IBM Corporation, San Jose, California

INTRODUCTION

Computer simulation has been used for some time
in the analysis and design of dynamic systems. With
recent advancements in computer performance, the
field of dynamic simulation-long the exclusive
domain of the analog computer-has begun to
utilize digital methods. No less than a score of
digital simulation programs have appeared since
R. G. Selfridge's pioneering effort in 1955; and the
number is ever-increasing. These programs offer a
convenient method of simulating continuous sys­
tem dynamics employing well-known and easy-to­
use analog computer programming techniques.
The common starting point for such simulation is
the conventional analog block diagram, and the
common approach is the breakdown of the mathe­
matical system model into its component parts or
functional blocks. These blocks, having a near one­
to-one correspondence with analog computing ele­
ments such as integrators, summers, limiters, etc.,
usually appear as subroutines within the simulator
program. Using one of the sim ulation packages,
"programming" involves no more than merely in­
terconnecting the functional blocks by a sequence of
connection statements according to the rules laid
down by the input language. This interconnecting

165

of blocks is analogous to the wiring of the patch­
board on an analog computer. Therefore, these
digital-analog simulation programs combine the
best features of the analog and digital computers:
the flexibility of block connection structure of the
former and the accuracy and reliability of the latter.

DSL/90 is a new digital simulation package for
the 7090 family of computers. The program is avail­
able from the SHARE library (lWDSL No. 3358).
Its development, from drawing board to production
code, was guided by the following broad objectives:

• To incorporate within it all the desirable
and proven features of its predecessors;

• To make this useful technique of digital
simulation attractive to a group of users
who are not analog-computer-oriented,
yet retain the large following of analog
programmers who are devoted to the
building-block approach to system anal­
ysis;

• Toprovide a "continuous system simu­
lator" program that is applicable to a
broad range of continuous system anal­
ysisand not restrained by conventional
digital-analog simulator techniques.

From the collection of the Computer History Museum (www.computerhistory.org)

166 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

Some of the DSL/90 features are:

• A library of DSL system blocks such as
integrator, limiter, summer, etc.;

• A simple nonprocedural applications­
oriented input language specifying the
rules for connecting the library blocks
together;

• An input routine which permits quick
and easy parameter entry and data
changes;

• Complete print output routines includ­
ing a graphical output facility;

• Choice of numerical integration routines
with or without error bounds using cen­
tralized or noncentralized integration
schemes;

• Automatic sequencing of input language
statements (this is called "sorting" in
programs such as ASTRAL and
MIDAS);

• Facility to add to the DSL/90 library
any user-defined blocks in the form of
subroutines (FORTRAN, MAP or
binary decks);

• Intermixing of DSL and FORTRAN
language statements;

• Repeatability of language statements
(macro-generation);

• Dynamic storage of data.

Although DSL/90's input .language statements
are block-oriented, they are not restricted solely to
block notation. DSL/90 permits an intermixing of
its input language statements (henceforth called
DSL statements) and FORTRAN IV statements.
Thus, the power of FORTRAN is made available
to the problem solver. One far-reaching implica­
tion of this language feature is that simulation
"programming" may begin anywhere from the
analog block diagram formulation of the problem
to the higher-level mathematical model in the form
of ordinary differential equations.

OPERATIONAL FEATURES

Basic Language Features

The DSL/90 language statements may be classi­
fied into three general categories: I) structure or
connection statements which define the intercon­
nection of the functional blocks, 2) data statements
which permit the entry of alphanumeric informa­
tion, and 3) simulation control statements.

The Connection Statements. In the DSL/90 input
language, the basic functional block is characterized
by an output (outputs) that is functionally related
to one or more inputs. Parameter names and initial
conditions, if any, are also included in the statement
which has the following general form:

Outputs = Block name (Initial conditions,
Parameters, Inputs)

Below are examples of basic DSL connection or
structure statements:

1. OUTNAM = SQRT (TEMP)

In the block diagram representation (Fig. 1),
SQ R T is the name of the functional block. It has a
single input called TEMP and the output is given
the name OUTNAM.

TEMP-~·I " ~-"""·~OUTNAM

SQRT

Figure 1.

2. Y = INTG RL (lC2, YDOT)

Figure 2 represents the block INTG RL which is
the basic DSL/90 integrator block. IC2 and YDOT
are its initial condition and input name respectively.

IC2

~

1
YDOT ·1; y

INTGRL
Figure 2.

3. OUT1,OUT2 = VALVE (LEVEL, INHI,
INMED, INLO)

Figure 3 illustrates a user-supplied functional
block named VALVE with two outputs OUT1 and
OUT2. LEVEL is a unique parameter name se-

LEVEL

:1
l

IN HI
: OUT 1 INMED

INLO
OUT 2

VALVE

Figure 3.

From the collection of the Computer History Museum (www.computerhistory.org)

DSLj90-A DIGITAL SIMULATION PROGRAM 167

lected by the user, and INHI, INMED and INLO
are the names of the three input variables to the
block.

From the above illustrations, it should be evident
that a functional block in the DSL/90 language is
completely specified by the unique names assigned
to the inputs and outputs of each block. The user
is free to select names meaningful to his process
simulation, the only restriction being that a name
consists of no more than 6 alphanumeric characters,
the first of which is alphabetic. User-supplied
blocks may have any name following the same re­
striction above. However, the names of standard

blocks supplied as part of the DSL/90 simulation
package are preassigned. DSL/90 provides an ex­
tensive library of functional blocks which are listed
in Table 1.

The above format for characterizing functional
blocks in DSL/90 is consistently adhered to. How­
ever, there are these exceptions: the basic operations
of multiplying, dividing, summing and subtracting
are replaced by the operators *, /' + and -, re­
spectively. To this list of operators we add ** for
exponentiation. Let us illustrate one of these opera­
tions by simulating a multiplier output (Fig. 4),

OUT = A·B.

Table 1. Functional Description of Standard DSL/90 Blocks

GENERAL FORM FUNCTION

** Y = INTGRL (IC, X) Y=f~ X dt + IC

Y(O) "' IC

INTEGRATOR EQUIVALENT L.APLACE TRANSFORM • t
* Y=MODINT (IC, PI' P2 , X) Y=Jot X dt + IC PI· I, P2 • 0

Y·IC PI =0, P2 • I
MODE-CONTROLLED INTEGRATOR y. LAST OUTPUT PI =0, P2· 0

* Y = REALPL (lC, P, X) py + Y • X
Y (0) • IC

1ST ORDER SYSTEM (REAL POLE) EQUIVALENT LAPLACE
I

TRANSFORM I PS + I

* Y = LEDLAG (lC, PI ' P2 ' X) P2 y + Y .. PI X + x
Y(O)" IC

PS+I
LEAD- LAG EQUIVALENT L APL ACE TRANSFORM 1_1 __

P2S + I

* Y = CMPXPL (IC I , IC2 , PI , P2, X)
•• • 2
Y + 2 PI P2 Y + P2 Y • X

Y(O) ,. IC I
y(O) ,. IC2 I

2 ND ORDER SYSTEM (COMPLEX POLE) EQUIVALENT l.APLACE TRANSFORM I

S2+2PI P2 S + P~

Y ,. DERIV (lC, X) Y = ~~ QUADRATIC INTERPOLATION

Y(O) • IC

DERIVATIVE EQUIVALENT L.APLACE TRANSFORM' S

Y=DELAY (N,P,X) Y(t) = X(t-P) t = P
P =TOTAL DELAY IN TERMS OF INDEPENDENT VAR.

Y=O t < P
N = MAX NO. OF POINTS DELAY

DEAD TIME (DELAY) EQUIVALENT ·LAPLACE TRANSFORM' e -PS

Y ,. ZHOLD (P, X) Y·X P·I

Y (0) = 0 Y • LAST OUTPUT P·O

ZERO-ORDER HOLD EQUIVALENT l.APLACE TRANSFORM I 1. (1- e-St)
S

Y .. IMPL (lC, ERROR, FUNCT) Y"IC t • 0 FIRST ENTRY

IMPLICIT FUNCTION y .. FUNCT (Y) t ~ 0

IY- FUNCT(Y) ''-ERROR' lyl

From the collection of the Computer History Museum (www.computerhistory.org)

168 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

SWITCHING FUNCTIONS

Y II FCNSW (P, XI , X2 , X3) y. XI P< 0

y. X2 P-O

FUNCTION SWITCH y. X3 P>O

Y = INSW (P, XI' X2) Y - XI P<O

INPUT SWITCH (RELAY) y. X2 P~O

YI ' Y2 • OUTSW (P, X) YI • X, Y2 • 0 P<O

OUTPUT SWITCH YI • 0, Y2 • X P~O

Y = COMPAR (XI' X2) Y • 0 XI < X2

COMPARATOR Y • I XI ~ X2

Y :: RST (PI' P2 ' P3) y·O PI > 0
Y • I P2 > 0, (PI " 0)
y·O P3 > 0, Yn-I • I , (P2 ~ 0, PI ~ 0)

RST FLIP- FLOP Y • , P3 > 0, Yn-I =0,
II "

* THESE FOUR BLOCKS EXIST AS BUILT-IN MACROS WITHIN DSL. IN-LINE CODE REPRESENTING

AN EQUIVALENT INTE~RATOR CIRCUIT IS GENERATED FOR EACH USE TO PERMIT THE USE OF

CENTRALIZED INTEGRATION SCHEMES WITHIN THE BLOCKS.

* * INTGRL MUST BE THE RIGHTMOST TERM FOR EACH LEVEL OF USAGE. IF X IS A SINGLE VARIIABLE

NAME THEN IT MUST BE UNIQUE WITHIN THE PROBLEM. IC MUST ALSO BE UNIQUE. (-IC IS
NOT VALID). A LITERAL MAY BE USED FOR IC. ALSO SE E SECT. 5-1.

We have decided not to use OUT = MULT (A,
B), but simply OUT = A ~B. Let us summarize
these ideas by considering a solution to Mathieu's
equation:

y + (1 + A cos t) y = 0 y (0) = 0, y(O) = YO

As the DSL connection st41tements for this circuit
follow a near one-to-one cqrrespondence with the
functional blocks in Fig. 5, they may be written as:

FCN A * COS (TIME)
MULT FCN*Y
Y2DOT - Y - MULT
YDOT INTG RL (0., Y2DOT)
Y INTG RL (YO, YDOT)

(Note that TIME is a DSL system name represent­
ing the independent variable of integration. It may
easily be renamed by the user.) ,

Observe that the DSL statements in the above
example are also FORTRAN arithmetic statements,

B

A--..... x t---·OUT

Figure 4.

and the right-hand portions of the statements are
merely FORTRAN expressions. Therefon;:, as such,
their complexity is restricted only by the rules' 1that
govern arithmetic expressions in the FORTRAN
language.

Furthermore, these expressions can serve as
inputs to any functional block, regardless of
whether it is a DSL/90 or user-supplied block. For
example, the first three DSL structure statements in
the problem above may be written as one statem1ent,

Y2DOT = - Y - A * COS (TIME):+: Y;

or perhaps as

Y2DOT = - Y * (1. + A * COS (TU~E)).

Y +(I + A cos t) y : O. y(O):O; yeo): Yo

1-----1----_ Y

MULT

Figure 5.

From the collection of the Computer History Museum (www.computerhistory.org)

DSL/90-A DIGITAL SIMULATION PROGRAM 169

FUNCTION GENERATORS

GENERAL FORM FUNCTION

Y·AFGEN (FUNCT. X) Y: FUNCT (X) Xo~X" .Xn
LINEAR INTERPOLATION

y. FUNCT (Xo) X< Xo
ARBITRARY LINEAR FUNCTION GENERATOR Y=FUNCT (Xn) X> Xn

Y·NLFGEN (FUNCT. X) y. FUNCT (X) Xo~X ~ Xn
QUADRATIC INTERPOLATION (LA GRANGE)

Y= FUNCT (Xo) X< Xo
NON - LINEAR FUNCTION GENERATOR y. FUNCT (Xn) X> Xn

Y·LIMIT (PI' P2• X) y. PI X<PI ¥ y. P2 X >P2
LIMITER y·x PI~X~ P2

~---.. X

Y·QNTZR (P, X) y. kP (k-1/2)P<X~(k+ 1/2)P

~x k=O,.:I:I. :2. :1:3

QUANTIZER

Y= DEADSP (PI' P2• X) Y·O PI ~X~ P2 P, Yf~/ y. X- P2 X> P2
DEAD SPACE y. X - PI X< PI

45 0Y· ~ X

Y·HSTRSS (lC. PI' P2 • X) Y = X- PI (X -Xn-I) > 0 AND

~
Yn-I~(X-PI)

Y(O)·IC y. X - P2 (X-Xn_I)<O AND P2 PI 450
X Yn_I~(X - P2)

HYSTERESIS LOOP OTHERWISE y. LAST OUTPUT / /

Y= STEP (P) Y·O t. < P Y tl
STEP FUNCTION y .. I t~P :P t

~ I

y .. RAMP (P) Y=O t<P
Y! P 6 450

RAMP FUNCTION Y =t-P t~ P
t ..

Y=IMPULSE (PI ,P2) Y=O t < PI

Yb"'t:1 Y = I (t - PI) • k P2 I t y=o (t - PI) ~ k P2 ...
IMPULSE GENERATOR k·O.I.2.3 PI

y. PULSE (P, X) y·o INITIAL

~
Y=I Tk~t<(Tk+X) 1 X ,
Y=O OTHERWISE

TI T2 t k=I,2,3
PULSE GENERATOR WITH P AS TRIGGER Tk• t OF PULSE k. Pk

Y • SIN E (PI' P2 • P3) v=o t<PI Y f P
'3

/P2
P2=FREQUENCY IN RADIANS/SEC. V"SIN [P2·(t-PI)+P3] t~PI ~I~·~:--;i P3 = PHASE SHIFT IN RADIANS
TRIGONOMETRIC SINE WAVE WITH I ""-/
AMPLITUDE. PHASE. AND DELAY

V·NORMAL (PI' P2 • P3) Y= GAUSSIAN DISTRIBUTION lAy WITH MEAN. P2 • AND
NOISE GENERATOR ·STANDARD DEV I ATION. P3 (NORMAL DISTRIBUTION) (PI = ANY ODD INTEGER) I ~
y .. UNZRPI (PI) y .. UNIFORM DISTRIBUTION 0 TO I If(Y)

(PI= ANY ODD INTEGER) I Y

o· flY) 1 r ~

V"UNMIPI (PI) V=UNIFORM DISTRIBUTION.
-I TO +1 I I Y

V = UNATOB (PI' P2• P3) Y= UNIFORM DISTRIBUTION.
-I I ~

NOISE GENERATOR P2 TO P2 +P3 ·rtf)-'
(UNIFORM DISTRIBUTION) Ip2 I'!

From the collection of the Computer History Museum (www.computerhistory.org)

170 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

In addition, if the output, YDOT, of the first in­
tegrator is not a variable of interest, the two integra­
tors may be "nested" as follows:

Y = INTG RL (YO, INTGRL (0., Y2DOT)).

Finally, if the variable Y is the oRly one whose out­
put is desired, the problem may be described by a
single DSL connection statement, namely,

Y = INTGRL (YO, INTGRL (0., - Y *
(1. + A*COS(TIME)))).

The Data Statements. The subject of data entry was
given prime consideration during the development
of language features of DSL/90. The end result is
free-form and symbolic specification of parameter
values and initial conditions following a card identi­
fier label which is punched left-adjusted in the first
six columns of a data card. For example,

Co Is 1-6
PARAM

INCON
CONST

7-72
A = 0.5, PARI = 62.4,

PAR2 = 3.215 E + 4
ICI = 0.2, XDOT = 1.3
CIC = 7.3, C2C = 100.,

T = 46.25,
EPSILN = 1.0 - 05

The identifying labels begin in column one. The
data items, separated by commas, may be placed
anywhere in columns 7-72. Blanks are ignored.
Three consecutive decimal points at the end of any
statement indicate that it is to be continued on the
next card. Continuation may begin anywhere in
columns 1-72. Data statements may be inter­
mingled with connection statements.

The Control Statements. The statements may be
conveniently grouped into three types:

1. Problem output control statements include
print and plot requirements, title information and
labeling of graphs, such as:

PRINT .01, Y, Y2DOT
PREPAR .005, Y, Y2DOT
GRAPH 8.,6., TIME, Y, Y2DOT
LABEL SOLUTION OF MATHIEU'S

EQUATION
RANGE DELT, X

The above cards will cause the printing of TIME,
Y, and Y2DOT at intervals of 0.01 units of time,
and preparation of TIME, Y, and Y2DOT for
graphing at intervals of 0.005 units of time. A
single 8 x 6-inch graph properly labeled as directed,
will be made with Y and Y2DOT plotted vs TIME.
The maximum and minimum values attained by
DELT and X will be printed at the end of the run.

2. Problem execution control statem,ents are
used to set error bounds and step size for integra­
tion routines, prescribe run cutoff conditions, and to
specify other pertinent run information. Typical
examples are

CONTRL DELT = .05, FINTIM = 2.0
ABSERR YDOT = 1.0 E - 5, Y = 5.0 E - 4.

The simulation will be executed from 0 to 2.0 with
an integration interval of 0.05. The error bounds
on YDOT and Y will be held at 1.0 x 10-5 and
5.0 x 10-4

, respectively. The latter bound will be
applied to all other unspecified integrator outputs.

3. System control statements provide the user
with a number of options, the most important ones
being choice of integration methods, bypassing the
sequencing routine, and renaming of system vari­
ables. They also include an END card which sig­
nifies the end of a logical set of data ,cards, and a
STOP card which ends the computer run.

For example:

CONTIN
INTEG MILNE
NOSORT
RENAME TIME = X, DELT = DELX
FINISH DIST = O.

These cards cause continuation of the simulation
from the last calculated point, selection of the Milne
5th-order integration scheme, exercise of the no-sort
option, renaming of two systems variables, and
termination of the run when the value of DIST
reaches zero.

All data and control cards, with the exception
of the END and STOP cards and certain logical
groups of cards (such as continuation statements)
may be intermixed with DSL structure statements
and may appear in any order. Proper statement
order is determined by an internal sort based on
correct information flow. Table 2 shows a c:ompll~te
list of DSL/90 data and control statements. Re­
turning to Mathieu's equation, a complete DSL/'90
program for y + (1 + A cost) y = 0 may be written
as follows:

1-6
TITLE

PARAM

INCON
INTEG

7-72
SOLUTION OF MATHIEU'S

EQUATION
Y2DOT = - Y*(1.0 + A * COS
(TIME))
A = 0.5
Y = INTGRL (YO, INTGRL (0.,
Y2DOT))
YO = 20.0
MILNE

From the collection of the Computer History Museum (www.computerhistory.org)

DSL/90-A DIGITAL SIMULATION PROGRAM 171

TABLE 2 Summary of DSL/90 Data Statement Format,

Label Function (By Example)

COL. 1-6 7-72

PROBLEM DATA I""PUT:
PARAM
CONST
INCON
AFGEN
NLFGEN
TABLE

TAU ~ 25., PAR = 3.15BE3, C4 = 2.0 E-5
CONI =45.3, PI=3.14159, K=3
ICI = 20., A = 50.2, IC3 = 0
FCN = 3.,25.,5.2,26.4,6.0,24., 7.5,21.3
FY3 ~ 0.,850.,5., 1245.,8., 1.574E3, 12.4, 2.4E03
PARI (8) = 4.5, INPUT(l-4) = 2.,2*8.6, 3.52E3

PROBLEM OUTPUT CONTROL:
PRINT 0.1, X, XDOT, VELOC
TITLE MASS, SPRING, DAMPER SYSTEM IN DSL/90
PREPAR .05, X, Y, XDOT
GRAPH 10., 8., TIME, X, XDOT
LABEL MASS, SPRING, DAMPER SYSTEM - 6/1/65
RANGE X, XDOT, VELOC, DELT

PROBLEM EXECUTION CONTROL:
CONTRL DELT = .002, FINTIM = 8.0, DELMIN = I.OHO
FINISH DIST=O., ALT=5000. .
RELERR X = I .E-4, XDOT = 5.E-5
ABSERR X = I .E-3, XDOT = I.E-4
CONTIN
INTEG MILNE
RESET GRAPH, PRINT

DSL/90 TRANSLATOR PSEUDO-OPERATION';:
RENAME TIME = DISPL, DELT ~ DELTX
INTGER K, GO
MEMORY INT(4), DELAY (100)
STORAG IC(6), PARAM (10)
DECK

SORT
NOSORT
PROCED

ENDPRO
MACRO

ENDMAC
END
STOP

CONTRL
ABSERR
PRINT
END
STOP

X = FCN (A, B, PAR5, IC3)

OUT = FCN2 (ICI, R, T, X)

DELT = .02, FINTIM = 2.0
Y2DOT = 1.0E-5, Y = 2.0 E-5
0.05, Y, Y2DOT

It should be apparent by now that the DSL input
language is block-oriented, symbolic, and free-form.
The use of FORTRAN is not limited to arithmetic
statements. All FORTRAN library functions such
as SQRT, SIN, COS, etc., are available. Under
the rules which are clearly defined within DSL/90,
a large subset of FORTRAN becomes available to
the simulation user without sacrificing the ease of
block notation programming. What this means to
the engineer who is unskilled in FORTRAN pro­
gramming is simply this: he can still perform his
process simulation with a simple language, follow­
ing a step-by-step building block approach. As he
becomes more proficient, his programming becomes
correspondingly more efficient and he may want to
include elementary FORTRAN language features in
his connection statements. Still later, as the com­
plexity of his problem increases, he may use to ad­
vantage the more powerful features of DSL and
FORTRAN.

Advanced Language Features

There are a number of other DSL/90 language
features which are especially useful for the simula­
tion of large or complex problems. We shall ex­
amine several of these.

Procedural Statements. Recall that the order in
which DSL statements are entered is unimportant
because connection statements are separated from
the rest and sequenced (or "sorted") by the DSL
processor (unless a "no-sort" option is exercised).
In other words, the DSL/90 language may be con­
sidered as nonprocedural. In contrast, FORTRAN
is a procedural language since FORTRAN state­
ments are executed in the order in which they are
written. Frequently, in a complex process simula­
tion, it is desirable to introduce procedural state­
ments within the simulation program. The purpose
may be to control signal flow in certain portions of
the program, or perhaps to compute a large number
of parameter values once and only once. DSL/90
uses a pair of pseudo:-operations, PROCED and
ENDPRO, punched in columns 1-6, to designate
the beginning and end of a block of procedural
statements (they may be DSL or FORTRAN state­
ments). Input and output names may be specified
on the PROCED card to allow the procedural state­
ments to be sorted as a block relative to other DSL
statements.

PROCED

10

20
30

ENDPRO

For example:

TEMP = BLOCKA (TEST, IN)
IF (TEST) 10, 10,20
TEMP = LIMIT (PARI, PAR2, IN)
GO TO 30
TEMP = IN + TEST
CONTINUE

During the sequencing of DSL statements, the
above procedural statements will be treated as a
single functional block with output TEMP and in­
puts TEST and IN, as illustrated in Fig. 6. The
order of the statements within the procedural block
remains unchanged.

Macro-Generation. Pseudo-operations MACRO
and ENDMAC, which are punched in columns

IN

:1 III TEMP
TEST

BLOCKA
Figure 6.

From the collection of the Computer History Museum (www.computerhistory.org)

172 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

1-6, are used to define a macro block. One may
think of a macro as a repeatable procedural block
with parameter variations. This is best illustrated
by example. The following statements constitute a
macro-definition:

1-6
MACRO

ENDMAC

7-72
OUT = FILTER (VI, V2, K, IN)
VI = (IN - V2)/K
V2 = INTGRL (0., VI)
OUT = V2 + O.5*VI

During the definition of the macro, no language
statements are produced. The name of this macro,
FILTER, must be unique. However, the output
name OUT and the input names, VI, V2, K, and
IN, are dummy symbols which will be replaced by
the actual names specified at the time when the
macro is used. The subsequent appearance of the
statement

LINE 1 = FILTER (AI, A2, TAU,XIN)

will cause the following three statements to be gen­
erated in-line:

Al = (XIN - A2) /TAU
A2 = INTGRL (0., AI)
LINEI = A2 + 0.5* Al

Just as in the case of the procedural block, these
statements will be sequenced as a single functional
block with LINEI as output and AI, A2, TAU and
XIN as inputs (see Fig. 7). The statements within
the block are not sorted. Both DSL and FOR­
TRAN statements may appear within a macro.

At

~I A2 LINEl

TAU :
..

XIN

Figure 7.

Implicit Function Block. DSL/'90 provides an im­
plicit function block called IMPL for the solution of
an implicit equationf(y) = 0 expressed in the form
of y = f(y). Clearly some iterative technique must
be employed. These iterations must be performed
within each integration interval until a convergence
criterion is satisfied. The program for IMPL uses
the direct iteration method developed by Wegstein.
If there is no convergence after some preassigned
maximum number of iterations, the simulation of
the problem is terminated with appropriate diag­
nostic printout.

To use the implicit function block, one writes t.he
DSL statement,

Y = IMPL (YO, ERROR, FOFY)

followed by the set of DSL or FORTRAN (or bOllh)
statements evaluating FOFY. Y, YO, ERROR
and FOFY are symbolic names selected by the user.
The DSL/90 system then sets up the necessary
iterative loop. Let us illustrate by solving the im­
plicit equation

C . (e Y - 1)
y =-----

e Y
(C is some constant)

One simply writes:

Y = IMPL (YO, ERROR, FOFY)

A = EXP(Y)

FOFY = C* (A - 1.0) / A

The DSL/90 translator will automatically gener­
ate the following statements:

30001 Y = IMPL (YO, ERROR, FOFY)
IF (NALARM .LE.O) GO TO 30002
A = EXP(Y)
FOFY = C* (A - 1.0) / A
GO TO 30001

30002 CONTINUE

Note that three statements, and only those three, are
added to the ones written by the user. The first time
the IMPL routine is entered, NALARM is set to
one, and Y is given the initial guess YO. After eaeh
calculation of f(y), program flow returns to the
IMPL subroutine where the convergence criterion is
tested. If satisfied, NALARM is set equal to zero
and y assumes the most recently calculated value of
f(y). Otherwise the iteration continues.

User-Supplied Functional Blocks. Although DSL/
90 provides an extensive library of operational
blocks, there are occasions when special blocks are
required to simulate specific process elements.
These special blocks are programmed by the user as
subroutines either in FORTRAN or MAP and
simply added to the data at the time the simulation
run is made. The user may treat these special blocks
like all other DSL library blocks, interconnecting
them to build a complex system model.

As an example of the use of special blocks, con­
sider the modeling of the analog-to-digital convertler
shown as a nonlinear stepwise quantization in Fig.
8. If no such general block existed in the DSL li­
brary, it would be difficult to construct such a char­
acteristic from the standard blocks available. How-

From the collection of the Computer History Museum (www.computerhistory.org)

DSLj90-A DIGITAL SIMULATION PROGRAM 173

--------------~~--------------~XIN

Figure 8.

ever, the quantization effect is easily modeled by the
following FORTRAN statements:

FUNCTION QNTZR (P, XIN)
QNT = AINT (0.5 + ABS (XIN)/P)
QNTZR = SIGN (p* QNT, XIN)
RETURN
END

The parameter named P containing the value of the
quanta step size is the only parameter supplied to
the QNTZR block. This value of P is entered into
the simulation program in exactly the same way as
any other DSL parameter-on a PARAM card.
Note also that the two blocks AINT (for truncation)
and SIGN (for transfer of sign) are standard sub­
routines of the FORTRAN library. The above
FORTRAN subprogram for the quantizer may be
entered directly with the data cards for the simula­
tion run, or as an alternative, it may be compiled
independently and the resulting machine language
deck (binary deck) added to the data deck. This
functional block may even be added to the perma­
nent DSL library by simply loading it on the library
tape. In fact this was the case with the QNTZR
block when we found it to be sufficiently useful to
warrant a place in the DSL library. The ease with
which a difficult nonlinearity has been modeled in a
few lines of FORTRAN coding is quite apparent
and typifies the flexibility of DSL/90 for handling
nonlinear functions and special blocks.

Arbitrary Functions. DSL/90 provides two func­
tional blocks, AFGEN and NLFGEN, for handling
arbitrary functions of one variable. The x, y coor­
dinates of the function points are entered sequen­
tially following an identifying label and the symbolic
name of the function, e.g.:

1-6 7-72
AFGEN FCI = -10.2,2.3, - 5.6,6.4, 1.0, 5.9, etc.

Although the total number of data storage locations
is necessarily fixed by machine size, there is no re­
striction on the number of points one may use to
define any function. The only requirement is that
the x coordinates in the sequence x\, YI, X2, Y2, .. '
are monotonically increasing. Any number of arbi­
trary functions may be defined, identified only by
their symbolic names assigned by the user. As an
example, the DSL statement Y3 = AFGEN (FC1,
XIN) will refer to the function called FC 1. AFG EN
provides linear interpolation between consecutive
points, while NLFG EN uses a second-order La­
grange interpolation formula.

Tabular Data. This feature of DSL/90 allows
blocks of data to be tr"ansmitted to the UPDATE
subroutine in tabular form. In the construction of
a special block, the user may have to consider sets of
initial conditions, history and input parameters.
This DSL/90 feature will eliminate the need for a
lengthy subroutine argument string. To illustrate,
suppose we wish to build a special block called
SPEC which requires two initial conditions and 10
parameters. We begin by writing the following two
DSL statements:

1-6 7-72
STORAG IC(2), PAR(10)
TABLE IC(I) = 2.0,IC(2) = 0.0, PAR(l)

= 4., PAR(2-10) = 9* 1.5

The first statement instructs the DSL/90 system to
assign a total of 12 locations-2 for the array IC
and 10 for PAR. The second statement illustrates
the manner in which numeric values are entered into
these reserved locations. Now, when we subse­
quently use a statement such as

YOUT = SPEC (lC, PAR, XINPUT)

DSL/90 system will replace the names IC and PAR
with the addresses of the first locations of the arrays
IC and PAR respectively. Obviously, the user when
programming his subroutine SPEC must realize that
the first two arguments in SPEC are location point­
ers to his arrays. His subroutine could begin with
the following:

FUNCTION SPEC (LOCIC, LOCPAR, XIN)
COMMON /CUR V AL/C(l)
I = LOCIC
J = LOCPAR

CURV AL is the labeled common where the current
values of all variables are stored, and I and J are
indices referencing the first initial conditions IC
and parameter values PAR.

From the collection of the Computer History Museum (www.computerhistory.org)

174 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

System Features

DSLj90 System Organization~ The DSL/90 Oper­
ating System is separated into two major functions:
language translation and model simulation. Each
function operates independently under standard
IBSYS control but as one continuous single-pass
operating system. The transition is made by having
the translator develop on an IBSYS scratch tape all
the elements of a standard IBSYS job as well as the
representation of the model to be simulated. This
tape is then switched in as the standard IBSYS input
for compilation and execution to complete the simu­
lation. Diagnostics are printed if errors are found
in translation or simulation. Elements which may
appearas input to the translator are: 1) DSL/90
problem-oriented language sentences to describe the
model, 2) data input to the model for parameter
values and control of the simulation and output, 3)
binary and BCD subroutines and functions supplied
by the user for the simulation, and 4) appropriate
controls to load binary or BCD subroutines and
functions from a library tape. The entire system
may be placed at any level of a standard batched
IBSYS run. Three additional tape drives are re­
quired-two auxiliary and one for plotting.

DSL/90 may be run as an independent program
or it may be used as a subprogram of a conventional
FORTRAN program for control purposes.

Sort. A nonprocedural input language such as
DSL/90 transfers the responsibility of establishing
the execution sequence from the user to the pro­
gram. To accomplish this DSL/90 alters the se­
quence of input statements according to the rule: an
operational element (or statement) is properly se­
quenced if all its inputs are available either as input
parameters or· initial conditions or as previously
computed values in the current iteration cycle. Un­
specified algebraic loops are identified and, if any,
the run is halted. The result of this sequencing oper­
ation is a properly organized FORTRAN IV sub­
program.

Main Program Control. DSL/90 provides for call­
irig the simulation routines from a MAIN program
specified by the user. Hence the actual digital simu­
lation may be placed under control of a FORTRAN
routine compiled at execution time. This feature
allows for testing of response conditions, matching
boundary values, and dynamic: alteration of param­
eters, initial conditions, or run control data between
parameter studies.

Centralized Integration. By use of the block name,
INTG RL, a user may specify that centralized inte­
gration is desired. The translator sets up statements
so as to compute all inputs to the integrators but
bypass computation of outputs until the end of the
iteration cycle. At this time, all integrator outputs
are updated simultaneously. A choice can be made
between the 5th-order Milne Predictor-Corrector,
4th-order Runge-Kutta, Simpson's Trapezoidal, or
Rectangular Integration methods. The first three
allow the integration interval to be adjusted by the
system to meet a specified error criterion, a factor
which allows it to take large or small steps depend­
ing on the rate of change of one or more variabl(!s.
There is provision in DSL/90 for the user to supply
his own integration scheme, which mayor may not
be centralized.

Dynamic Storage Allocation. Data in DSL/90 is
stored in a single vector including current values of
structure variables and table values for function
generators, integration history, error bounds,
STORAG variables, etc. The storage is allocated
dynamically (i.e., at execution time) according to
what portions of the simulator are used and how
many integrators, tables, and structure variables are
in the simulation model. Standard DSL/90 blocks
are loaded only if used.

APPLICA TIONS

Having illustrated operational features of the
DSL/90 digital simulation program, we will now
draw upon the previous introduction to show how
DSL/90 has been flexibly applied to simulation
problems. Three specific simulations will be con­
sidered: 1) a biomedical block notation problem
involving a respiratory servomechanism; 2) a proc­
ess analysis problem involving the simulation IOf
heat transfer dynamics of a recirculating furnace
used in the glass industry; and 3) the simulation of
the flight dynamics of a portion of the SATURN V
booster rocket.

DSL/90 provides special programming features
such as different integration methods, sorting,
special blocks, etc., which make it attractive to the
user for continuous system simulation. Several of
these features will be illustrated in the examples to
follow.

Application No. i-Respiratory Servo Simulation

This problem involves evaluating the response of
a proposed model for respiratory control of CO 2

From the collection of the Computer History Museum (www.computerhistory.org)

DSL/90-A DIGITAL SIMULATION PROGRAM 175

partial pressure in the venous and arterial blood
streams of a human. De Fares et al performed the
original study on an analog computer and repre­
sented the basic CO2 control mechanism in respi­
ration by the three-compartment model shown in
Fig. 9. Using the original study as a guide, this first
example will illustrate the ease of handling conven­
tional analog simulation problems using DSL/90.

LOCAL

CO2

Figure 9. C02 control model.

The CO 2 control system operates as follows: The
alveolar tissue in the lung serves as an exit sink for
CO 2 production and possesses both CO 2 capacity
and conductance characteristics. In a similar man­
ner, body tissue can be considered as having an
equivalent CO2 capacitance and conductance. CO2

produced by the body is partially stored in the local
body tissue, raising the local body tissue partial
pressure of CO 2 • The CO 2 produced is simulta­
neously diffused through the tissue and picked up by
the blood stream (venous path). The CO 2 is then
carried to the lung and subsequently diffused to the
alveolar tissue, raising its CO 2 partial pressure. Si­
multaneously, CO 2 is produced in the region of a
receptor (C02 detector) in the medulla. This CO 2 is
similarly diffused and carried to the alveolar tissue
through the venous blood stream. It can be shown
that the basic controlled variable in this system
model is the partial pressure of CO 2 in the receptor
tissue located in the medulla.

If CO 2 -enriched air is also brought into the lungs,
it simultaneously affects the CO 2 diffusion and
buildup in the alveolar lung tissue. De Fares et al
have shown that the partial pressure of CO 2 in the
receptor can serve as an effective mechanism for
controlling diffusion of CO 2 from the receptor and
from inspired air. In this study, the CO 2 partial
pressures of mixed venous blood flow and body
tissue will be assumed equal. Similarly, the CO 2

partial pressures of arterial blood flow and alveolar
lung tissue will be assumed equal. .

By introducing disturbances in the CO 2 content of
inspired air, the dynamics of such a control model
may be studied. The objective of this model is to
hold constant th~ partial pressure of the CO 2 in the
receptor by controlling the diffusion conductance of
CO 2 from the receptor area and of the inspired gas
to the alveolar lung tissue. Thus, the CO 2 partial
pressures of alveolar tissue and local body tissue will
respond dynamically to changes in CO 2 content of
the inspired air.

Network Model. Because of the dynamic analogies
existing between the gas dynamics of the CO 2 dif­
fusion model above and conventional circuit dy­
namics, it is convenient to represent the biological
model by an equivalent circuit model. Figure 10
shows three capacitors tied together with variable
nonlinear conductances, which represent the dif­
fusion characteristics of the separate tissue/blood
interface. The capacitors represent local tissue CO 2

C02 RECEPTOR LUNG BODY TISSUE

Figure 10. Equivalent network model.

capacity, and the voltages become the respective
CO 2 partial pressures. The voltage source E repre­
sents the partial pressure of CO2 -enriched inspired
air and is defined by the following relation:

E Fi (B-47)

Fi % CO 2 content in inspired air

where B = atmospheric pressure in mm Hg.

Table 3 lists the electrical network parameters
and variables together with their physiological
equivalents.

Digital-Analog Simulation. As a first example of
DSL/90 application flexibility, conventional analog

From the collection of the Computer History Museum (www.computerhistory.org)

176 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE. 1966

Table 3. Electrical and Physiological Equivalents, Application No.1

Elec. Physiological

Symbol Qkantity ':'Units

G I CO
Z

conductance-air to lung tissue Liters (gas)/min/mm Hg (gas)

GZ CO2 conductance-body tissue to lung Liters (COZ)/min/mm Hg (COZ)

G3 COZ conductance-receptor to lung Liters (COZ)/min/mm Hg (COZ)

C j
Capacity of lung tissue Liters (gils)/mm Hg (gas)

C z Capacity of body tissue Liters (COZ)/mm Hg (COZ)

C 3
Capacity of receptor tissue Liters (COZ)/mm Hg(COZ)

-
VI COZ partial pressure of lung tissue mm Hg (CO

Z
)

V
Z

COZ partial pressure of body tissue mm Hg (CO
Z

)

V3 COZ partial pressure of receptor tissue mm Hg (CO
Z

)

E Partial pressure of COZ in inspired air mm Hg (CO
Z

)

14 Bony COz production Liters (COZ)/min

IS Receptor COZ production Liters (COZ)/min

II ~02 diffusion from inspired air to lung Liters (gas)/min
tIssue

I Z
~OZ diffusion from body tissue to lung Liters (COZ)/min
tIssue

13 CO Z. diffusion from receptor tissue to
lung tissue

Liters (COZ)/min

':'Units are liters BTPS, m. m. Hg, minutes

block notation will be used to program the simula­
tion. Figure 11 represents a DSL/90 digital-analog
simulation block diagram of the network model
shown in Fig. 10. Since DSL/90 operations are in
floating-point arithmetic, no problem scaling is re­
quired and the parameters may be entered directly
in terms of their conductances are given by the fol­
lowing relations:

where t/; is proportional to the slope of the experi­
mentally determined steady-state cardiac output
versus CO 2 partial pressure curves-liters (C0 2)/

min/mm 2 Hg (C0 2); and e == initial value of G,
liters (COi)/min/mm Hg (C02),

Using data from respiratory experiments, the fol­
lowing parameters and initial values hold for the
simulation:

VI (0)
V2 (0)
V3(0)
t/;I

40.0
45.0
45.0
0.0038

0.00344
0.l7
0.0008
0.1648

0.0025
0.0002
0.25

0.0625
0.0007
0.001

The DSL/90 statements which describe this sim­
ulator follow.

TITLE RESPiRATjOI\ SERVO PROBLEM - ANALOG MODE SOLUTION 6-1-65 RUN 1

::j,\=;:'-; i.-STEP(TDELAY))
hj)K2=E i ~~-Vl
G;=PSll*V3-THETAl
11=Gl*ADR2
Vl=INTGRL(VlIC.(ll+12+13)/Cl)
ADR4=V2-Vl
G2=PSI2"V2-THETA2

Connection
Statements

12=G2*ADR4
V2=INTGRLlV2IC.(14-12)/C2)
ADR7=V3-Vl
63 =PS I 3*V 3- THE T A3
13=G3*ADR7
V3-INTGRLlV3IC.(15-13)/0)

PARA'I CI-0.00344. C2=u.17. C3=0.000S.... i
~~k ~:~ :g~ i~;s ~S i~~~ ~~~~: ~6~;; 3~~E ~~~~2 ~: ~~u 7. 6.21. 4 P:~~~ct,~:r.

CO,'lST 14-0.25. 15=0.0(;1. TOELAY=20.0
INCON VlIC=40.0. V2IC=45.0. V3IC.45.0

CO,'lTRL FINTU'l=36.0. DELT-0.05
RELERR Vl=O.OOl
:NTEG MILNE

}
Run

Control

PRINT 001, Vb V2. V3' Gl. G2. G3. 110 12. 13
PREPAR 0.05. Vl' V2. "3' G1. G2. G3. 11. 12. 13
GRAPH 6.0. 4.0. TIME. \/lo V2. V3 Print and
LABEL PAR PRESS 3.0 PRCNT C02 RUN 1 6-1-65 Plot Output
GRAPH 6.0. 4.0. TIME. Gl' G2. G3
LAtlEL CONDUCTANCE 3.U PRCNT C02 RUN 1 6-1-65
GRAPH 6.0. 4.0. TIME. 110 12. 13
LABEL C02 DIFFUSION 3.0 PRCNT C02 RUN 1 6-1-65

END
STOP

From the collection of the Computer History Museum (www.computerhistory.org)

DSL/90-A DIGITAL SIMULATION PROGRAM 177

+ + +

Figure 11. Digital-analog simulator block diagram.

Figures 12 and 13 show nonretouched DSL/90
plots of CO 2 partial pressures and tissue conduc­
tances. Inhaled air containing 3% CO2 was assumed
for 20 minutes followed by a 20-minute span of
normal room air with no CO 2 content.

During the first 20 minutes, the receptor tissue
(medulla), body tissue, and aveolar lung tissue all
take up CO 2 • The second 20-minute span shows the
nonlinear response during purging of body CO 2 •

~

IO

'0 x
-~

~

~

~

r-

-~
'§
~

CD

~
18 •

'"

.....
.•..

,-

-. ! ,/
! ,

~x f I _ it'
II

~ /,'
_ il

>: ,I,I

'I
I
I

LEGEND

----- :

VI
V2
va

:+---~----r---~-=='==--'----,
B. 16. 24.

TIME
32. 40. 4B.

Figure 12. Par press 3.0% C02 run 1,6-1-65.

Figure 14 shows part of the results printout and
input data format.

After the initial runs were completed, a change in
the G 3 conductance characteristic was suggested by
medical research personneL Instead of a linear re­
lationship between G 3 and receptor CO 2' partial
pressure, a smoothwise increasing empirical func­
tion as shown in Fig. 15 was substituted. To do

LEGEND
GI
G2

.... G3

~ CD
.,; -

CD --------,:
-N '-'" .-.~

N '?
0

~ B ,\ x '0 -8 " N ,\ 'N - I:.

''I
1\

r5 " '.:l \\

N .,; cO '.~.:....-.-...-.-- ..

~ II>

cD
B. 16. 24. 32. 40, 48. TIME

Figure 13, Conductance 3.0% C02 run 1, 6-1-65.

From the collection of the Computer History Museum (www.computerhistory.org)

178 PROCEEDINGS--SPRING JOINT COMPUTER CONFERENCE, 1966

*** DSLl9D SIMULATION DATA ***
TITLE RESPIRATOR'! SERVO PROBLEM - NETWORK MODE SOLUTION &-1-65 RUN 4

this, it was necessary to redefine the G 3 conductance
characteristic as the output of an arbitrary function
generator block as follows: PARA!'. Cl~0.uiJ344') CZ·u.17. C3~u.Ov()8 ••••

PSIl.O.0038. PSIZ.O.OuZ5. PSI3.0.00002

THETAI-v.lb41:1. THETA;<=".v&"~. THlTAj= v.vvv7. E·~1.4

(ONST 14=0.Z5. 15'0.0()1. TDELAy z 20.0

INCON VIIC'40.0. VZIC·45.U. V3IC'45.1.

CONTRL FINTI""36.0. DELT.U.v5

RELERR Vl·O.OOI

INTfG "ILNE

PRINT 0.1. VI. V2. V3. GI. 62. G3

PREPAR 0.05. VI. V2. V3. 61. 62. 63

LABEL PAR PRESS 3.0 PROH C02 RUN 4 6-1-&5

6RAPH 6.0. 4.0. TIME. 61. 62. 63

LAI:lEL CONDUCTANCE 3.U PRCNT C02 RUN 4 &-1-6~

FIlD

T Figure 14a. DSL/90 simulation data.

T I .~ E VI V2
O. It.OO,)OE 01 4.5000E

10.000:-02 1+.1'n7~ 01 4.5036£
:?OOOf:-Ql 1+ • (11 (} E 01 4.S0Q7E
1.000~-01 If. ?"3 f)qE 01 It. 516~F
It. 0 OOE - C 1 It-. 231.,6 r: 01 4.5225E
I).OOOE-Ot (+.235'11: 01 4.5?8,st
6.0f)f")E-,)1 4.2V')OE OL 4.")144E
7.000~-,,)1 1 ?3 /.f")'= 01 4. 5/t-0 1 E
:' • I) OOE-I) 1 4.2331E 01 4.1)45 'iF
(}. 000!:-0 1 't. l3 ~ 1,= 01 4.1)t')01E

1C.OOOE-01 4.~315f 01 4.5'557F
1.100F: 00 1+.?30 Q ': 01 4.560SF
1.?00E 00 I ... 2 }'J 1 E 01 4.56'>1':
1.3001: Of) 1 ... 2295E 01 I t .56Qt)E
1.400E 00 4.??~'-}E 01 I ... 573i3r:
1.500~ 01) It. Z 2 g I ... E 01 4.S17QE
!.600E 00 4.??7C)E 01 4.5819E
1.700r- 00 1+ • 2271, r- 01 4.:857 C

1.800E 00 4.227CE ')1 4.SWnE
1.c)OOr: CO 't.?26 Cj,= 01 /+0 5 9? R E
2.000E 00 4.~~f)?r:: 01 Ito ')062 f

4.22 'j iJ E 01 4.5 Q c;/+;:
~C:;J: 01 It .6f')?'1E

~.c)00E r)l ~1' •. , " _ _ , ':>021E
3.510C:: 01 l~ .00 ~l'=, 01 It. SO 2 3f
':3. f) ZOE 01 It • C' O:.? :1 '= 01 4.5023E
3.510r:: 01 14.00?:;~ 01 ' ... 50.::? 3E
'3 • 51~ or: 01 It. 00 2 ~c:: 01 't.50?3E
3.5,)f')C:: 01 4.f)0?,")r~ 01 1·.5023E
1.S60E 01 It. OO? (~i: 01 (~ • (~O 2 3!:
1.570r: 01 I • • OO? ;:) c 01 4.~0~3E

1. c:; IV) ,') 1 I, • (' ()? ,~ 01 I •• r; 0 1. 3 f=
~.['jC)n ()l I~ .(1)) C\ ,: 01 4.I)O?'3E
":\.f:,()0 f) 1 4.00~~': 01 1 •• 5021,E

01
01
01
01
01
01
01
01
01
01
01
01
01
01
rq
01
01
Ot
01
01
01
01
01

'!l
01
01
01
01
01
01
01
01
01
01
01

DSL/90 ~rJ.1lJlt\TrIJN r I ~1 E 13.1192

G3 = AFGEN (F3, V3)

where the G 3 characteristic is given in a sequence! of
X and F(X) values.

AFGEN F3 ~ 0.0, .0002,48., .0002,49., J)0021" '"
50., .00023, 51., .00027, 52., .00031,
53., .00035,... 54., .00039, 55.,
.00043, 56., .000465, 57., .00048" ...
58., .00049, .59., .000495, 60., .0005,
80., .0005

In addition to the analog model approach shown
here, two other methods were programmed in DSL/
90 involving the network equations directly and

V3 Gl G2 G3
4.,)000F 01 6.2000F-03 '5.00001:-02 2.0000'=-04
4.S030E 01 6.31471=-03 5.0089E-02 2.0060E-04
4.1)082E 01 6.51321:--03 5 • 0 2 It- 2 E - 02 2.0165~-04
4.51~!3E 01 6.7232E-03 5.0404E-02 2.02' 751:-04
It-s192E 01 6. '12 flltE-03 5.0562~-02 2.0:'1831:-04
It-. !) 24/t-E 01 1.1.7.62E-03 5.0714E-02 2.0437:::-04

' It-. I) 2 9 / .. E 01 7.3168E-03 5.0861f-02 2.0588!:-04
4.53 4 2E 01 7.S003E-03 5.1002E-02 2 • 06 8 4 I: - 0 It
4.5389E 01 7.676')E-03 5. 1137E"':02 2.0777E-04
4.'1433E 01 7.8468'=-03 5.1267F-02 2.0A67f-04
4.5 1 .. 76E 01 8.0103E-03 5.1392E-02 2.0953::-04
I h 5518E 01 8. 16 76E-03 1).1511c;-02 .7..10361=-04
4.'5558F 01 8.118<)E-03 5.1628E-02 2.11I'1E-04
It .55S6E 01 e • 1.6 4 It C - 03 '5.1 '(39:'=:-02 2 • 1 1 <; ~ r:- i) 4
I •• 5 (>3 3 E 01 8.6043E-03 5.1846E-02 ?1265':-0/.,.
I • • ') f~ f, P, E 01 r.7':\89f-03 I) • 1 ') I. () E - 0 ? ?1336E-(Y.,.
I •• '5 -, 0 2 E 01 8 • 8 6 13 ,'t [- 0 3 5.2047r:-02 1 • l't 0 4 r: - () It
I • • », 3 5 F 01 8.99Zer::-03 5 • 2 1 It 2 ~ - 0 2 2 • 11.,. 70 r: - 0 It
I .. • ') 766 E 01 9.11251:-03 '1.2233 c -02 2.1t)33E-04
I • • 57 ') 7 E 01 9.2276f-03 5.23211:-02 2. I 593F-()/.,.
4.SR26F= 01 9.1382E-03 '5.240C;~-02 2.1652':-04
It. ~'" 't:::r::-03 5 • 2 It- 86 E - 02 2.1708E-/V.

').2'61E-02 2· 1 -.

...... ,,,,", ~ --

.• :Jut9E Ul,

It. 501 9E 01 6.L. JU~~8E-u.,

It. 5 C 19 F. 01 6.271'5f-v~ "Co ?OO38E-04
It. '501 q E 01 6.27!'3E-03 5.00'57E-02 2.0038~-04

4.1)01<)E 01 6.2l14f-03 5.00'J7E-02 2.00~!3E-04

lh 50 t 'H: 01 6.27L41:-03 5.1Y057~-02 2.00 ';!8 E-O/+
It. 5019 E 01 6 • :? 7 l't 1= - 0 3 5.0057f:-()2 2.0038(-04
It. 50 19F 01 6.2713(-03 5.0057E-02 7..0038~-04

1·.')019F 01 6.2713E-01 5.()()1)7E-02 2.()0"38F=-04
4 • " () 1 'I f 01 6.2713~-03 5.0057f::-01. 2.00-::\A=-0/ ..
4.S0I.CJE 01 6.2711[-03 5.0057E-02 2.00'l8~-04

4."nlc)F 01 6.2lt?E-01 5.0057f:-0? 1.. 00 ~17~-04
l ... '50 I (] F 01 6.?.7!2E--03 5.0057E-02 2.00:r/~-04

SECONDS

Figure 14b. Respiratory servo problem-network mode solution.

From the collection of the Computer History Museum (www.computerhistory.org)

DSLj90-A DIGITAL SIMULATION PROGRAM 179

or

6.0

5.0

1<2 4.0
><
If) 3.0
LL.

2.0

1.0

V

0.0
48
49
50
51
52
53
54
55
56
57
58
59
60

v
48 52 60 56

80

Figure 15. G3 conductance characteristic.

F3

.0002

.0002

.00021

.00023

.00027

.00031

.00035

.00039

.00043

.000465

.00048

.00049

.000495

.0005

.0005

fundamental compartment models. This last ap­
proach has proven particularly attractive since the
biomedical user can directly program his own simu­
lation problem without learning an artifax tool such
as analog computer notation, network analysis, or
FORTRAN programming. These techniques result
in a major reduction in the user time required from
initial problem coding to achieving final results. In
addition, complete printouts and digital plots are
available for each problem run, considerably simpli­
fying the simulation documentation problem.

Application No.2-Glass Tank
Recirculating Furnace

This second example involves the analysis of the
heat transfer dynamics of a recirculating furnace
used for preheating combustion air on a glass tank.
The problem illustrates the ease of using generalized
block notation in DSL/90 for performing contin­
uous system simulations. In this case, the example
was drawn from the industrial process control field.
The technique, however, is broadly applicable to
any continuous system analysis problem.

As shown in Fig. 16, air is forced through a large
preheating chamber, called a checker, filled with
bricks cross-stacked to allow passage of the air
around the brick surface, thereby preheating the
cold air from the brick. The preheated air is then
mixed with fuel, fired, and the resultant flame front
melts the glass material in the tank. The hot com­
bustion gases are forced through another checker,
heating up the cold brick, and finally forced out the
stack. After a period of time, usually about 15
minutes, the flow direction valve is reversed so that
the cold checker that had been heated by the hot
gases now becomes the preheating checker for the
cold incoming air. Similarly, the previous hot
checker that had been cooled by the cold input air
now receives hot combustion gases which heat it up

[] GLASS
TANK

REVERSING
VALVE HOT

CHECKER

,Figure 16. Schematic diagram-reversing furnace.

again. The object of the simulation is to study the
heat transfer dynamics of the recirculation furnace
during the heating and cooling cycles induced by
air flow reversals.

The first step ~as to divide each checker chamber
into three blocks, as shown in Fig. 17, effectively
breaking a continuously distributed system into a

HOT

CHECKER

jTG~
~~I
jTatJ
~~
jTG~SI
~RIKI

TAIR

GLASS
TANK

COLD

CHECKER

TBRIK6

TGAS6

Figure 17. Reversing furnace-end view.

From the collection of the Computer History Museum (www.computerhistory.org)

180 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

sequence of lumped-parameter segments. The non­
linear heat transfer relationships for each block are
given by Eqs. 1 and 2.

d
dt P2 V (TA T GAS = (TAF I TIN - (TAF I T GAS

+ hA I (T BRICK - T GAS)

+ K [(TBRICK + 460)4

- (T GAS + 460)4] (1)

:t M (T B T BRICK = hA 2 (T BRICK - T AMB)

where (TA

(TB

V
M

P2

FI
Al
h
K

..

TBRICK

T GAS

TIN

- hA I (TBRICK - T GAS)

- K [(TBRICK + 460)4

- (T GAS + 460)4]

CHECKER

BLOCK

Figure 18. Checker block.

= specific heat of the gas,
= specific heat of the brick,
=: volume of the checker,
= mass of the checker,
=: gas density,
= gas flow,

(2)

= heat-transfer surface area of brick,
=: conductive heat-transfer coefficient,
= radiation heat-transfer coefficient,
= checker brick temperature,
= checker gas tern perature, and
=: input gas temperature to checker.

These differential equations were programmed in
FOR TRAN and used to define the characteristics of
a checker-block, shown in Fig. 18.

The following assumptions and approximations
hold for Eqs. 1 and 2.

Assumptions
1. Heat transfer by radiation and convection.
2. Temperature of checker is a function of time

and space (I-dimensional).

3. Checker temperature is uniform in any plane
perpendicular to flow.

4. Gas temperature is uniform in any plane per­
pendicular to flow.

5. Brick thermal conductivity is infinite.

Approximation
1. Distributed temperature in each checker is rep­

resented by a lumped parameter system of three
stages.

The generalized block of Fig. 18 has one: input,
the entering gas temperature, and two outputs, the
exiting gas temperature and the internal brick
temperature. Once the block has been programmed
and checked out, the user can connect any numb(~r
of these together to represent the system by simply
using the DSL/90 statement:

TGAS, TBRIK = CHEKR(TGIC, TBIC, TIN),

where TGAS
TBRIK

TGIC
TBIC
TIN

output gas temperature of checker,
internal brick temperature of
checker,

= initial gas temperature,
= initial brick temperature, and
= input gas temperature.

Figure 19 shows the block model of one complete
checker. Three checker blocks have been used

~GAS FLOW

r----~

Figure 19. Block model of checker gas flow.

together with three switching blocks that revers(!
the flow direction through the blocks.

Now if this block model is used as a model of
each checker, the DSL/90 statements which repre,­
sent this system can easily be written by the user

From the collection of the Computer History Museum (www.computerhistory.org)

DSLj90-A DIGITAL SIMULATION PROGRAM 181

in terms of the basic checker blocks as follows:
.. ••• STRUCTuRE STATEMENTS

* " •• ChECKER 5~'11 TCrlt:S
C1 1:\= j,\S;'; I TRIGR.TAIR.TGAS2)
C2: ~:o I.,Si/1 TR IGR. TGA:;1 .TGA:;3)
C 3, r;. I 1';:;;\(T R I GR. TGAS2. TCOI~8)
e,,: 1';0 I :-;,,;((TR I GR. TCO:-l6. TGAS5)
e 5 ,1';= ,1\5;': i TR IGR. TGAS4 .TGAS6)
C6; 1';- iNS;" TR I (,R. TGAS5. TAl R)
T R I GR.-O. 5+S TEP (TREVRS)

* ••• HOT CHECKER BLOCKS
TGASltT~RiKI-CHEKR(TGI IC.TiH IC.Cl IN)
TGAS.2. TbRI K2.CHEKR (TG2IC. TI:I21C .C21 N)
TGAS3. TeRI K3-CHEKR« TG31 C. T831C. C31 N)

* ••• COLD CHECKER BLOCKS
TGAS". TtlR I K4.CHEKR (TG4IC. TB41 C. C41 N)
TGASS. TI:lRI KS.CnEKR (TG5IC. TB51 C. C51 N)
TGAS6. TI:!RI K6.CH!::KR (TG6IC. Te61 c. C6IN)

* ••• DATA

PARAM Fl-120000 •• SIGMAA-O.24. SIGMAB.0.24 ••••
TAIR.360 •• TCOMB-2800 •• TAMB-120 •••••
M-IOOOOO •• AI-15000.. AZ-300
K.4.5E-06. H-IO.. v-sooo
TiiEVRS-15.

INCON TG1IC-850.. TG2IC-13i)() •• TG3IC-1800 .. 'OO

TElllC-1600 .. TI:!ZIC-ZOOv •• T63IC-2501l
T(,4IC-Z300 .. TI,;5IC-1900 •• TG6IC-UOII
TtI4IC-1300 .. TtlSIC-I00u .. TB6IC-700.

PRINT 0.1' TGASl' T(,AS2' TGAS3' TG"S4' TG"&5. TG"&6 ••••
TBRIKI. TBRIK2. TBRIK3. TBRIK4. TBRIK5. TBRIK6. TRIGR. ClIN

CONTRL F I NT IM-30 •• DELT-O.ul

pr<~PAR 0.05. TGAS3. TG"S6. T6RIK3. TBRIK6.TG"Slt TG"&4. TdRIKlt TBRIK4
GRAPH 6.0. 4.0. TIME. TGAS3t TflRIK3
LABEL 3RD CHECKER BLOCK TEMP& RUN 4
GRAPH 6.0. 4.0. TGAS6. TBRIK6
LABEL 6TH CHECKER BLOCK TEMPS RUN II
END
STOP

Note that the parameter and variable names are
almost direct symbolic equivalents of the physical
notation used for describing the furnace.

Figures 20 and 21 show the actual plotted results
of temperature variations at the outlets of the hot
and cold checkers for a IS-minute flow reversal
cycle. Advantages of this approach in addition to
those already mentioned in example no. 1 include
the ability to expand the simulation easily to include
control system blocks and other system dynamics
without disturbing the existing furnace simulation.
This feature has proven particularly powerful in
analyzing complex industrial processes.

Application No.3-Saturn V Booster Rocket

Vehicle Description. This study applies digital simu­
lation to the flight dynamics analysis of a large space
vehicle booster. The problem illustrates the use of
DSL/90 algebraic notation stat~ments. In this
study, the system example was drawn from the aero­
space industry, but the use of DSL/90 algebraic
notation can be applied to a broad range of prob­
lems including parts of the previous two examples.

The vehicle used in this study was the SA TURN
V launch vehicle for the APOLLO lunar mission.
As shown in Fig. 22, the vehicle configuration con­
sists of three booster stages and the APOLLO
spacecraft. The overall length is 360 feet and, fully
fueled, the vehicle weighs approximately 6 million
pounds. The first, or S-IC, stage is powered by five

..
N

~
...
~
~ ...
""N
~

i
.... \11

N

:l

III ...

..

~

..
N

..
I:)

Et:j
N

"". r.n
$
fl-..

:l

~
5.

LEGEND

10. 15.
TIME

TGfIIIII
TIIIIQ

20. 26. 30.

Figure 20. Third checker block temperatures, run 5.

" " " " " " "

LEGEND

" " " " "

TGA86
TIIIIK8

~
III ~~----'------r-----.-----r----.-----'

5. 10. 15.
TIME

20. 26. 30.

Figure 21. Sixth checker block temperatures, run 5.

F-l engines, each of which provides a thrust of 1.5
million pounds. The four outboard engines are
swiveled and provide for thrust vector control
during powered flight. The SATURN V vehicle has
an independent inertial navigation and guidance
system from that in the APOLLO spacecraft in
addition to a control computer and required sen­
sors.

Trajectory. This simulation is concerned with the
analysis of flight dynamics from launch through
first-stage burnout. The booster-stage flight profile
is shown in Fig. 22 and consists of a gravity turn for
150 seconds with separation occurring at approxi­
mately 60,000 meters altitude and a 2350-m/sec
velocity. The rigid body equations of motion that
were simulated form a perturbation set with respect
to a rt!ference frame moving along the nominal tra­
jectory as shown in Fig. 23.

Axes X), X 2 X3 form an orthogonal set, with X 2

aligned along the nominal velocity vector and axes
X), X 2 lying in the nominal boost plane. The fuel
sloshing dynamics of the first stage propellants were

From the collection of the Computer History Museum (www.computerhistory.org)

182 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE,1966

25

APOLLO SPACELAFT 1
20

S-IVB
ORBITAL +--f INJECTION

~

Q S-IV B STAGE
X t-oo 15 a::
LIJ
J-
LIJ
~ S-lif z
LIJ a 10 ::l
J-

5
ct

S-IC STAGE

5 l
o 250 500 750 1000

TIME (SECONDS)

Figure 22. SA TURN V configuration and flight profile (from Ref. 5).

Nominal

Nominal I rUJ.""UII Y

point

Figure 23. Reference frame axes (from Ref. 6).

included as well as the dynamic effects of elastic
bending along the booster longitudinal axis. The
attitude control system was also included in the
simulation, together with the dynamics of the gim­
balled thrust VECTOR control system and hydrau­
lic actuators for the engines, as shown in Fig. 24.

Since the defining equations of vehicle motion are
far too complex for the purposes of this paper, the
reader is referred to the basic documentation for the
complete problem description. To illustrate the
features of DSL/90, only a small portion of the
larger problem will be treated-the pitch axis con­
trol system. Figure 25 is an expanded description
of the control system filters, together with actuator
and engine dynamics. The command signal filte:r
block processes the pitch command signal from the
control computer prior to applying it to the engine
gimbal hydraulic actuators.

In order to investigate booster flight dynamics, a
primary wind disturbance was applied to the vehide
during the first stage of powered flight as shown in
Fig. 26. Horizontal wind loading was assumed,
with varying azimuth angles for wind heading.

Referring to Fig. 25, the transfer functions for
the command signal filter and engine dynamics can
be expended in Laplace notation to yield the equiva­
lent linear operational equations:

S2{j2 = K I {j21 u + K 2S {j2 + K 3{j2 (3)

From the collection of the Computer History Museum (www.computerhistory.org)

DSL/90-A DIGITAL SIMULATION PROGRAM

m
.---------,

IT

183

/3~ r---------· I
t----+----+----i~ HYDRAULIC ENGINE /32

I I ACTUATOR DYNAMICS
I I DYNAMICS

I I I I L ______ --' L _________ J

¢2 + ¢:p

II

I--~~~O----. ---I I

DYNAMICS ¢ I r------ --l : 'HI VEHICLE DYNAMICS I
DATA ADAPTER INERTIAL I INCLUDING LONGITUDINAL

L...-.........-f.---1 DIGITAL REFERENCE 14-----'

COMPUTER SYSTEM BENDING a FUEL

and

I I SLOSHING I
L ________ ~ L---r--~

. . . fR
'X 2 + ¢2 + ¢2

'X2

¢2
. fR

¢2

¢2

cpJP

,Bilu

/3i
/32

NOMINAL PITCH RATE - DEG/SEC

WIND LOAD
DISTURBANCE

PERTUBATION IN RIGID BODY PITCH RATE - DEG/SEC

PITCH RATE DUE TO VEHICLE FLEXING MEASURED AT
THE RATE GYRO STATION - DEG/SEC
PERTUBATION IN PITCH ATTITUDE - DEGREES

ATTITUDE DUE TO VEHICLE FLEXING MEASURED AT
THE STABLE PLATFORM STAT ION - DEG/SEC

/32 PITCH ATTITUDE COMMAND, UNFILTERED

/3 PITCH ATTITUDE COMMAND, FILTERED

ENGINE GIMBAL ANGLE (PITCH AXIS) -DEGREES

Figure 24. Simulation signal flow diagram (from Ref. 5).

S2P2 = (K32P~ - K 31 (2)S + (K34P~ K 33(2)

1 + (K36 P2 - K 3S(2) S (4)

Equations (3) through (5) can be directly pro­
grammed as DSL/90 statements as follows:

where S is the conventional Laplace operator.

* PITCH ATTITUDE CONTROL SECTION
BET2CU == - (AO*(PH12+ PH12FP)

+Al*(CH12D+PH12D
+PH2DFR))

From Fig. 24, the expression for the unfiltered
pitch command signal P~ I U becomes:

P21 11
= [aO(cI>2 + cI>/P) + alex + ~2 + ~l')] (5)

BET2CD = INtG RL(B2CDO, K 1 *BET2CU
+ K2*BET2CD + K3*BET2C)

From the collection of the Computer History Museum (www.computerhistory.org)

184 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

COMMAND ACTUATOR
SIGNAL a ENGINE
FIL TER DYNAMICS

/32
C I U

Kl K32S
2

+ K34S + K 36

S2+K2S +K3 {.3.C S3+K3IS2+K33S +K35 2

Figure 25. Pitch axes control system.

BET2C = INTG RL(BET2CO, BET2CD)
BET2DD= K32*BET2CD - K31 *BET2D

+ K34*BET2C ...
- K33*BET2 + INTG RL(IC53,
K36*BET2C - K35*BET2)

BET2D = INTGRL(BET2DO, BET2DD)
BET2 = INTGRL(BET20, BET2D)

/32

For the complete simulation, over 400 DSL/90
statements were required, not including the function
generators and data statements. Both block and
algebraic notation were used for describing the
simulation configuration. The above small portion
of problem coding is an excellent example of the
ease of using both algebraic and block statements
in DSL/90. Note the use of symbolic names for
variable and data names which closely resemble the
actual names. This feature has proven particularly
helpful for large simulations .

. 20

.18

.16

>-
t: .14 u
0

>- ...J

t- w
U > .12
0 w
...J ...J
W u .10 > J:
0 W

Z >
i ...J .08

<t
z
~ .06 0
z

.04

.02

The SATURN V flight dynamics were simulatled
for the first 120 seconds of powered flight. Figures
27,28 and 29 show resultant DSL/90 plots for three
of the system variables being studied.

The SATURN V simulation demonstrated several
important features of digital simulation. First, a
complex nonlinear aerospace problem could be
successfully solved in DSL/90 by engineers rela­
tively unskilled in programming. Second, many
problems require both algebraic and block notation.
The ability of DSL/90 to handle both of these re­
quirements was amply proved. Third, problem
solutions could be obtained quickly with a minimum
of setup time. The original programming I'equified
approximately 16 hours of an engineer's time for
problem setup. Each run of 120 seconds flight time
required approximately 25 minutes of IB]\1 7094
computer time. In addition to the above featuf(!s,
DSL/90 allowed the user to model his problem in
segments, checking out portions of the simulat,ed
vehicle independently, and then to hook these se:c­
tions together. As an example, the trajectory equa­
tions form one section of the simulation, pro­
grammed in algebraic notation, of which the control
system is another independent part programmed in
block notation.

___ ---- 75 m/s

--------------~----~------~----~------------~-----,~ o 20 40 60 80 100 120 140 160

TIME (SECONDS)

Figure 26. Primary wind disturbance (from Ref. 5).

From the collection of the Computer History Museum (www.computerhistory.org)

~ ..
N
a.
....J
a: x

i
2.

DSL/90-A DIGITAL SIMULATION PROGRAM

i
4.
iii
6. 8. 10.

TTlHE (XI01)

Figure 27. Pitch axis angular acceleration .

i
12.

i
14.

185

I
16.

• ~--------~------~~------~--------~--------~------~~-------r--------~ I I I I I
t. 4. 6.. 8'. 10. 12. U. 16.

TTtHE (X10l)
Figure 28. Velocity along X3 axis.

CONCLUSIONS

Within IBM, DSL/90 has been used extensively
in many different application areas including circuit
design, mechanical dynamics, process analysis and
control, servo design, aerospace flight simulation
and biomedical modeling. Simplicity of the input

language, clarity and completeness of both print and
plot output, and the ease with which data is handled
are some of the features which have made DSL/90
attractive to an increasing number of problem
solvers from both camps-analog and digital. In
DSL/90 workshops, it was observed that engineers
with hardly any analog or digital computer ex-

From the collection of the Computer History Museum (www.computerhistory.org)

186 PROCEEDINGS-SPRING JOINT COMPUTER CONFERENCE, 1966

----~--
N
LaJ
CD
X

N
I

~~----.-----~---------~~--------~----------~----------~--I iii i i i
lZ.

i
14.

-,
16. Z. 4. 6. 8. 10.

TTIHE (XlOI)

Figure 29. Engine gimbal angle for pitch axis.

perience successfully "programmed" in DSL/90 at
the end of the first two-hour session. With this
quick "shot" of confidence and further experience,
many have proceeded to more difficult problems
using the more advanced features of the language.

The examples shown indicate only a few of the
broad range of problem areas to which DSL/90 can
be applied. In addition to the above examples,
DSL/90 has successfully simulated the process
dynamics and control system responses for a paper
machine dryer section control system. In this study,
actual process noise gathered at the plant site was
introduced into the simulation through the MAIN
routine. Several nonlinear process and control ele­
ments were successfully modeled using the external
block features of DSL/90, including nonlinear
process controllers and scanning moisture gauges.
DSL/90 was recently used for the simulation of an
ammonia reaction process involving two-point
boundary value matching. In this case, severe simu­
lation problems were created by the fact that the
system had two regions of time response, each
governed by different differential equations and in­
terfacing through initial values. Both the features
of the "MAIN" program and the ability to intro­
duce logical functions into the DSL/90 block struc­
ture were extensively employed.

Many of these simulation areas previously han­
dled with analog techniques have long been troubled
with problems of component reliability, accuracy,

repeatability, and a lack of flexibility in modeling
basic dynamic components and phenomena. In
some respects, the trend toward digital simulation
methods is a result of seeking answers to these;:
problems. Some of the advantages of digital simu··
lation as observed in the above application studies
can be listed as follows:

1. Problem accuracy control.
2. Elimination of problem scaling.
3. Simulation run repeatability.
4. Reliable digital simulation elements.
5. Significantly reduced problem prepara­

tion time and simulation checkout timc~.
6. Simple problem coding. The majority

of detailed circuit knowledge for analog
programming is unnecessary.

7. Easy performance by the digital com­
puter of some operations which at best
are only approximated by analog com­
puters.

8. Effortless provision of positive docu­
mentation of silJlulation configuration
and parameter values.

To date, digital simulation techniques have shown
themselves easy to learn, efficient to operate, accu­
rate, and extremely flexible. They provide the
engineer with an easy and quick method of digitally
simulating complex systems, familiar block notation
concepts, and the power of digital compultation

From the collection of the Computer History Museum (www.computerhistory.org)

DSL/90-A DIGITAL SIMULATION PROGRAM 187

methods. The result represents a significant new
simulation tool for engineering analysis and design.

ACKNOWLEDGMENTS

To our co-worker in this project, Mr. D. G.
Wyman, we gratefully acknowledge his excellent
contributions in both programming and concepts.
We have benefited greatly from the many valuable
suggestions of members of the computation labora­
tory, Systems Development Division, IBM, San
Jose. Special thanks are due to Mr.A. H. Hoffman
whose contributions to the exploratory program
PLIANT paved the way for DSL/90.

The contributions of J. G. DeFares, P. E. Cowley,
and F. Crane to the three application examples are
particularly acknowledged ..

BIBLIOGRAPHY

1. Brennan, R. D., and R. N. Linebarger, "A
Survey of Digital SimuJation: Digital-Analog Simu­
lator Programs," Simulation, vol. 3, no. 6, pp. 23-36
(Dec. 1964).

2. __ , "A Survey of Digital Simulation: Part
II-More Digital Analog Simulator Programs,"
ibid (to be published).

3. Dahlin, E. B., and R. N. Linebarger, "Digital
Simulation Applied to Paper Machine Dryer Stud­
ies," Proceedings, Instrument Society of America,
6th International Pulp and Paper Instrumentation
Symposium, Green Bay, Wisconsin, May 4-8,1965.

4. DeFares, J. G., H. Hara, and E. M. Billing­
hurst, "The Stability of the Respiratory Servo­
mechanism: An Analog Computer Study," Progress
in Biocybernetics, Elsevier Publishing Company,
New York, 1964, vol. 1.

5. Gunderson, R. W., and G. H. Hardy, "Piloted
Guidance and Control of the SA TURN V Launch
Vehicle," Proceedings, IFAC Symposium on the
Peaceful Uses of Space, Stavenger, Norway, June
1965.

6. Hardy, G. H., J. V. West and R. W. Gunder­
son, "Evaluation of Pilot's Ability to Stabilize a
Flexible Launch Vehicle During First Stage Boost,"
Technical Note D-2807~ National Aeronautics and
Space Administration, Washington, D. C. (May
1965).

7. Shah, M. J., C. James and J. M. Duffin, "Sim­
ulation of an Ammonia Synthesis Reactor," 1966
Conference Proceedings, International Federation of
Automatic Control, London.

8. Wegsteih, J., "Accelerating Convergence of
Iterative Processes," National Bureau of Standards,
Washington, D. C.

From the collection of the Computer History Museum (www.computerhistory.org)

From the collection of the Computer History Museum (www.computerhistory.org)

